正项级数u收敛 u³是否收敛
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 16:11:05
若正项级数un收敛,则un收敛到0,即存在N,当n>N时,un
分别是条,条,绝.
由于∑u²收敛,∑1/n发散,因此存在N,当n>N时,有u²
级数定理.是无穷求和的,通项趋于0,得到级数收敛.不用管(-1)^n项,趋于0,不会因为正负而改变.前项大于后项是不包括那符号的,级数收敛的必要条件,得递减嘛
一致收敛
用比较定理呗,构造一个新级数,b_{2n-1}=0,b_{2n}=a_{2n}.于是∑b_n被收敛级数∑a_n所界定,自然也收敛
这个是定理啊,大收敛推出小收敛,基本上不用证明.如果非要证也很简单,写一写定义就可以了.再问:老师问我们为什么--我该怎么说求解~再答:你是什么专业的?用e-N定理说一下就出来了。对任意e>0存在N,
我来上个图.再答:再问:原来是用基本不等式,谢谢!再答:不客气
应该等于n乘n-1也就是等于(a-u)乘(n剪1)答案就是a乘u再问:可我这边答案写着是U1-a,就是没有步骤再答:把你的QQ号给我,我和你讲再问:1309288676
就是每一项都取绝对值后都收敛,若绝对收敛,必然他收敛,希望对你有所帮助!
经济数学团队帮你解答,有不清楚请追问.满意的话,请及时评价.谢谢!
再答:求采纳
解答图片已经上传,请稍等.
一.易见a_{n+1}/S_n>1/x在区间[S_n,S_{n+1}]上的积分,两边求和,就得到左边的级数大于等于1/x在a_1到正无穷上的积分,当然是发散的.二.用Dirichlet判别法.
此级数是交错级数,考虑到通项中有指数是n的幂,开n次幂的极限是无穷大,所以为发散级数
题目呢
|sin(n)/(n√n)|
∑(un-u(n-1))=(u1-u0)+(u2-u1)+(u3-u2)+(u4-u3)+...=un-u0=a-u0其中u0为数列的首项再问:�Ǹ�Ҫ�DZ�ɡ�Un-U(n��1)��再答:∑Un-
设正项级数∑{n=1,∞}Un加括号后构成正项级数∑{k=1,∞}Vk(Vk为k个括号求和)Un位于第k个括号中,其中k=k(n)∑{n=1,∞}Un的前n项部分和为Sn∑{k=1,∞}Vk的前k项部