比值法判断((n 1)½-(n-1)½) n

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 23:11:21
比值法判断((n 1)½-(n-1)½) n
matlab解隐函数f=sqrt(n1*n1-ns*ns)*k0*b-n*3.1416+2*atan(sqrt(ns*n

你是通过f=0解出ns和k0的关系么?把其他参数的数值给出来吧.再问:呃,错了,有值的n1=1.509n2=1.454n=0b=0.52ns取值1.4--1.6再答:n1=1.509;n2=1.454

用比值法判断级数(∞∑n=1 )ntan「π/2^(n+1)」敛散性

这个级数是收敛的.经济数学团队帮你解答.请及时评价.

利用比值判别法判断级数 (n+1)/3^n 的敛散性.n从1到无穷

lim((n+1)+1)/3^(n+1)/((n+1)/3^n)=lim(n+2)/(3(n+1))=1/3

利用比值判别法判别级数∑(n-1)!/3^n的敛散性

un=(n-1)!/3^nun+1=n!/3^(n+1)所以lim(n->∞)un+1/un=lim(n->∞)[n!/3^(n+1)]/(n-1)!/3^n=lim(n->∞)n/3=∞所以发散.

判断此级数的敛散性:(n1-无穷)(-1)的n次方*根号下(n-根号n)-根号n 答案是发散.具体如何判断!

(-1)的n次方*根号下(n-根号n)-根号n当n是偶数时式子等于根号下(n-根号n)-根号n=[n-根号n-n]/[根号下(n-根号n)+根号n]=-根号n/[根号下(n-根号n)+根号n]-1/2

matlab语句“y1(find((n>=min(n1))&(n

find函数是按条件查找,==1就是判断是否等于1.

N1 与 N2 相差是不是很大 好似很多人N1也不合格我现在12月考N3...觉得N5,4,3差不多看过N1完全不懂,N

其实差别也不算大,因为以前日语考试是4个级别的.现在变成5个级别了,N1把原来的一级水平的难度往上提升了一点,因此比起以前来现在的N1与N2的差距就变大了.同时无形当中N1与N2也是专不专业的重要标志

6|(n+n1+n2+.nk),证明6|(n^3+n1^3+n2.nk^3)

要证明6|(n^3+n1^3+n2.nk^3),可以分为两步:1.证明(n^3+n1^3+n2.nk^3)是偶数对任意的一个整数x,与x^3同为奇数或同为偶数所以n+n1+n2+.nk与n^3+n1^

利用比值判别法判断级数 ∑(无穷大 n=1) n^2/2^n的收敛性

因为an=n^2/2^n,a(n+1)/an=(n+1)^2/2^(n+1)/(n^2/2^n)=(1/2)*(1+1/n)^2趋向于1/2

matlab程序n1=input('请输入采样点数n:'); n=-n1:n1; sinf=exp(-(n/pi).^2

提示哪里就是哪里出错了你调用函数fft1没有往里面传递m但是你函数里面用到m了m没定义再问:那怎么加到里面啊???再答:这函数你写的我怎么知道怎么加到里面如果不是你写的看是不是抄错了,或者把m换成n试

用比值法判断级数∞∑n=1 ntan(π/n)敛散性

对级数    ∑(n>=1)ntan(π/n),用不上比值判别法.由于    lim(n→∞)ntan(π/n)=π*lim(n→∞)tan(π/n)/(π/n)=π≠0,据级数收敛的必要条件得知该级

利用比值判别法判断级数(Σ上标∞下标n=1)●(n+1)/4^n的收敛性.

limn趋向无穷|an+1/an|=|(n+1+1)/4^(n+1)|----------------------|(n+1)/4^n|=(n+2)/4(n+1)=(1+2/n)/4(1+1/n)->

用比值法判断级数(∞∑n=1 )「2*5*••*(3n-1)」/「1*5*•R

由比值判别法,这个级数是收敛的.经济数学团队帮你解答.请及时评价.

用比值判别法判断级数的敛散性

再问:两道题都是你答的,太厉害了!大神,求认识,求扣扣!再答:额,我一般啊,正好会的→_→再问:求扣扣~~~再答:额我加你吧再问:498065110再答:额,为什么看不到你的号?再答:再发一遍?再问:

求大神,解高数 利用比值判别法判断收敛性

再答:应用等价无穷小tanx~x

高数题 用比值法或根值法审敛(n-1)!/n^(n-1)有图~

比值法,之后,n/(n+1)趋于1,用第二重要极限得,[n/(n+1)]^(n-1)趋于1/e,收敛.再问:刚刚翻上册数才记起两个基本极限~唉。。。

用MATLAB实现函数stepseq(n0,n1,n2),使函数实现u(n-n0),n1

function[x,n]=stepseq(n0,n1,n2)%Generatex(n)=u(n-n0);n1