比较法在正项级数

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 18:04:08
比较法在正项级数
正项级数un,vn收敛 求证 级数(un+vn)^2收敛 高手来 !

若正项级数un收敛,则un收敛到0,即存在N,当n>N时,un

用比较法级数(∞∑n=1)1/n^n敛散性

该级数是收敛的. 经济数学团队帮你解答.请及时评价.谢谢!再问:那n为2时候呢再问:n为2就是个数了,我的错再答:比较判别法只要从某一项开始满足不等式就可以,前面增减有限项不影响收敛性。再问

级数 n^(1/n)-1 的敛散性,用比较法或比较法的极限形式

n^(1/n)--1=e^(lnn/n)--1=1+lnn/n+小o(1/n)--1等价于lnn/n>1/n,因此原级数发散.

判断正项级数的收敛性:

级数的加项极限是1,不满足收敛的必要条件(加项趋于0),所以该级数发散.

用比较法判断级数的收敛性(∞∑n=1)1/ln(n+1)

跟1/n的求和去比较吧.1/3+1/4+...1/n...发散,所以1/ln3+1/ln4...+1/ln(n).发散,因为后者每项都大于前者

【无穷级数】正项级数收敛的证明

用比较定理呗,构造一个新级数,b_{2n-1}=0,b_{2n}=a_{2n}.于是∑b_n被收敛级数∑a_n所界定,自然也收敛

判断正项级数敛散性的题目,

用积分中值定理∫[(n-1)->n]dx/x(lnx)^p=[n-(n-1)]1/[ξ(lnξ)^p]=1/[ξ(lnξ)^p],其中ξ∈[n-1,n],而f(x)=1/x(lnx)^p当p>1时是个

在判断任意项级数敛散性时是不是必须先判断其正项级数的敛散性?

在判断任意项级数敛散性时一般是先判断该级数是否绝对收敛,若非绝对收敛,再判断其是否条件收敛的.

关于正项级数收敛的证明.

我来上个图.再答:再问:原来是用基本不等式,谢谢!再答:不客气

用比较法或极限形式判定级数n分之一的n次方的收敛性

当n≥10时,1/n^n≤1/10^n,而级数∑1/10^n收敛,所以级数∑1/n^n收敛再问:为什么令n≥10?再答:这个没什么特别原因,令n≥2或3都可以,只要保证后一个级数收敛就行。

数项级数的分类数项级数是不是包括一般项级数、幂级数、正项级数三类,还是一般项级数、函数项级数、正项级数三类,还是其他的

应该是级数分为数项级数与函数项级数,正项级数是数项级数中的一种,幂级数又是函数项级数中性质比较好的一种级数,之所以重点研究这两类,一是因为简单,二是因为性质好!你无需将他们分类!没必要!掌握好性质及敛

请问在判断任意项级数(不是交错级数)对应的正项级数发散时,怎么判断该级数的敛散性?

你所说的不是交错级数的任意项级数,那么它对应的正项级数就应该是指它加了绝度只之后的级数吧.那么既然你已经判别出其对应的正项级数是发散的,那么原来的级数和对应的正项级数有相同的敛散性.再问:条件收敛呢?

判断级数敛散性:(1/n) × sin(1/n),题目要求用比较法或比较法的极限形式.

0sin(1/n)∑(1/n)×sin(1/n)1收敛)根据比较判别法,正项级数,大的收敛,小的收敛,所以原级数收敛

判断一个正项级数的敛散性

与调合级数比较,limn^(-1-1/n)/n^(-1)=lim1/n^(1/n)=1,由比例判别法知两者同敛散,故原级数发散.上式最后一步是常用极限n开n次方=1,证明可假设此式=1+a,即n=(1

判断正项级数的敛散性,

1/根号(n(n^2+1))因为n(n^2+1)=n^3+n>n^31/(n(n^2+1))Σ1/n^(3/2)因为3/2>1所以这个级数收敛,根据比较判别法,原级数收敛

微积分,判别正项级数敛散性

第一题,分子分母同乘(√(n+1)+√(n-1)),再与n^(3/2)作比较,比较判别法的极限形式,收敛第二题,得再想想,sorry(仅供参考)

有比较法或其极限形式判别下列级数的收敛性

用比较法极限形式,作比较的为(π/3^n)limn->∞|sin(π/3^n)/(π/3^n)|令t=π/3^n->0=limt->0|sin(t)/t|=1由比较法极限形式,所以两个级数收敛性相同我

一个级数收敛性判断问题,比较法...14数三全书

因为被积函数在区间[n,n+1]上的最大值是左边那个数,而被积函数在积分区间上大于0,因此它的积分值将小于左边这个最大值乘以区间长度1

在公务员解题中什么是纵向比较法?什么是横向比较法?

朋友,我建议你在公务员考试网上或者人事网上进行查证,那里你能得到最详细的资料!一般这样的情况自己在公务员网站上查找最详细的资料才会对你最有利!人家提供的信息可能有遗漏,希望我的建议对你有所帮助!祝你好