比较积分区间1到2定积分lnx与(lnx)^2的大小

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 19:50:11
比较积分区间1到2定积分lnx与(lnx)^2的大小
求定积分∫((1-x^2)^3)^0.5dx 积分区间为0到1

令x=sinz,dx=coszdz∫(0→1)(1-x²)^(3/2)dx=∫(0→π/2)cos³z*(coszdz)=∫(0→π/2)cos⁴zdz=(4-1)!/

计算定积分 ∫cos(lnx)dx ,积分限1到e

∫cos(lnx)dx令u=lnx,x=e^u,dx=(e^u)du当x=1,u=0;当x=e,u=1原式=∫(e^u)cos(u)du=∫e^ud(sinu)=(e^u)sinu-∫sinud(e^

求定积分1/(sinx+cosx)dx积分区间0到1/2派

很简单积分号内分式上下同乘以sinX+cosX的conjugate也就是SinX-CosX那么,现在分式下方就是(SinX)^2-(CosX)^2这样你把分式上面的Sinx-Cosx拆开拆成sinX/

分部积分法求定积分求定积分∫ln(1+x^2)dx,积分区间 (0,1)求定积分∫arctan跟xdx,积分区间 (0,

1,xln(1+x^2)-∫2x^2/(1+x^2)dx=xln(1+x^2)-2∫(1-1/(1+x^2))dx=xln(1+x^2)-2(x-arctanx)2,设t=√x,x=t^2,dx=2t

1/(x^2+2x+2)^0.5的定积分,积分区间为-1到0 (cosx-(cosx)^3)^0.5的定积分,积分区间为

第一个1/(x^2+2x+2)^0.5的定积分可以化简成1/((x+1)^2+1)^0.5,然后把(x+1)当成u,du/dx=1,所以du=dx,所以原式可以换成∫1/(u^2+1)^0.5du,这

大一高数题计算定积分计算定积分从1到e 的 cos(lnx)dx的值

令lnx=y,则x=e^y1≤x≤e0≤lnx≤10≤y≤1∫(1e)cos(lnx)dx=∫(01)cosyd(e^y)=∫(01)(e^y·cosy)dy=(1/2)(e^y·cosy+e^ysi

定积分∫|lnx|dx 上限2下限1/2

∫lnxdx(上限2下限1)-∫lnxdx(上限1下限1/2),∫lnxdx=xlnx-x

lnx/x定积分

∫lnx/xdx=lnlnx+c

定积分∫(lnx)2dx与∫(lnX)3dx积分区间为[4 3]哪个大哪个小

因为积分下限3>e,所以在积分区间内,(lnx)3>(lnx)2,所以∫(lnx)3dx大.

急!求一道关于定积分的数学题 (1+lnx)/x在1到e上的定积分

原式={(1+lnx)d(lnx)=lnx+[(lnx)^2]/2=1-0+1/2-0=3/2

求定积分:∫(e到1)lnx dx

解由分步积分法,可得∫(lnx)dx=(xlnx)-∫xd(lnx)=(xlnx)-∫dx=(xlnx)-x+C,(C为常数)∴由牛--莱公式,可得原式=1

求定积分在区间(正无穷~e)∫1/x(lnx)^p dx

∫[e,+∞]1/[x(lnx)^p]dx=∫[e,+∞](lnx)^(-p)dlnx=1/(lnx)^(p-1)*1/(-p+1)=0-1/(lne)^(p-1)*1/(1-p)=-1/(1-p)=

求一个定积分∫dx/﹙lnx﹚,区间是0到1

lnx=tx=e^tx=0时,t为负无穷,x=1时,t=0dx=e^tdt原式=∫e^t/tdt(-无穷,0]f(t)=e^tf'=e^tf''=f'''=f''''=...=f(n)泰勒展开:f'(

求定积分∫lnx/(1+x2)dx(积分限从0到1)

0到1的积分我不会求,但0到∞的可以求出.再问:��˵���е��?����һ������֡�ln��x+1��/(1+x2)dx(����޴�0��1)�أ�����һ����ʽ�ұ߻������д

求(1+lnx)/xdx 在积分下限1到积分上限e的定积分

(1+lnx)/xdx=(1+lnx)dlnx=lnx+(lnx)^2/2定积分等于3/2.

lnx从0到1的定积分

因为lnx在0处无定义,这是一个瑕积分,首先用分部积分法,下面[0,1]表示0为下限,1为上限∫[0,1]lnxdx=xlnx[0,1]-∫[0,1]x*(1/x)dx=0-∫[0,1]1dx=-1注