e^(-y^2)求积分
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 12:43:20
symsxint(0.5*exp(-abs(x)),-inf,inf)使用的是int函数,有三个参数,第一个是积分函数,第二个和第三个分别是上下限
我想LZ的意思是求不定积分:∫(e^x)/(1+e^2x)dx=∫1/(1+e^2x)d(e^x)然后用第二类换元法,令e^x=tant,则t=arctan(e^x)代入可得:∫1/(1+e^2x)d
积分[e^x/2*(cosx-sinx)]/√cosxdx=积分2[1/2e^x/2*(cosx)^(1/2)-1/2e^x/2*sinx(cosx)^(-1/2)]dx=积分[2e^x/2*(cos
选用极坐标系,积分区域D:0≤θ≤π/2,0≤r≤2/(sinθ+cosθ)I=∫[0,π/2]dθ∫[0,2/(sinθ+cosθ)]e^[sinθ/(sinθ+cosθ)]*rdr=∫[0,π/2
这个属于积不出函数,实际上很多非初等函数是积不出的,函数在不定积分上是没有原函数的,这些需要平时的积累,记住几个典型的.
当λ≥0时,∫x²e^(-λx)dx不存在当λ>0时,∫x²e^(-λx)dx=[-x²e^(-λx)/λ]│+(2/λ)∫xe^(-λx)dx(应用分部积分法)=(2/
在matlab中求>>symsx>>int(exp((-x^2/2)))ans=(2^(1/2)*pi^(1/2)*erf((2^(1/2)*x)/2))/2
求积分∫[e^(2x)]dx原式=(1/2)∫[e^(2x)]d(2x)=(1/2)e^(2x)+C再问:为什么∫[e^(2x)]d(2x)下一步等于e^(2x),请详细点好么,我不太懂再答:基本公式
先把(e^x)(sinx-cosx)放到微分号d里面去,变为积分号1/2)xd(e^x)(-cosx-sinx)然后分布积分
由题意知,积分区域是由y=x,y=2和x=0构成的三角形区域此三角形的三个顶点坐标分别是(0,0),(2,2),(0,2)则原式=∫e^(-y²)dy∫dx=∫e^(-y²)ydy
如果题目只是求积分y/(2+y^2)dy你做的是对的但看给的答案,明显你写的题目不全x,y的关系没写出来再问:原题目是e^x/(2+e^2x)dx我将y=e^x化了然后得到我的答案没问题么?再答:有问
letdF(x)=e^(x^2)dxdG(x)=cos√xdx∫(0->y)e^t^2dt+∫(x^2->1)cos√tdt=0F(y)-F(0)+G(1)-G(x^2)=0d/dx{F(y)-F(0
1-e^2x=(1+e^x)(1-e^x)于是变成求1+e^x的积分,等于x+e^x+C
原式=(-2)[积分(下0上1)e^(-2x)dx]*[积分(上1-x下0)e^(-2y)d(-2y)]=(-2)[积分(下0上1)e^(-2x)dx]*[e^(-2y)|{下0,上1-x}]=(-2
由已知得dy/dx=(e^y+z)/(e^x+z),dz/dx=(z^2-e^(x+y))/(e^x+z),dz/dy=(z^2-e^(x+y))/(e^y+z),所以可以得到三式,e^ydx+zdx
原式=∫x²d(e^x)=x²e^x-∫e^xd(x²)=x²e^x-2∫xe^xdx=x²e^x-2(x-1)e^x+c
好像有个分部积分法是这样的:∫f(x)dg(x)=f(x).g(x)-∫g(x)df(x)根据这个公式有∫e^(x^2)dx=x*e^(x^2)-∫xd(e^(x^2))=x*e^(x^2)-∫xd(
还是给你写了一下过程...请见下图
这个函数的不定积分不是初等函数来的,我用MATLAB试了一下symsxyy=exp(x^2);f=int(y,x)得到f=-(pi^(1/2)*i*erf(i*x))/2后面的erf就是一个内部函数.
求二维随机变量函数的概率密度,如果是Z=X+Y的形式,可以用卷积公式,这时只需要对X或Y进行积分,结果是相同的,不过要注意积分区间的选择.如果不是这种形式的话,就不能用卷积公式.比如你说的这道题,正确