e^(iz) (1 z^2)的积分
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 19:08:49
[s]seedsomesitseatsee[z]zebragoodscompositionzeromagazine[iz]glassesboxesteachesfisheswatches
z=a+biz的共轭=a-biz减z的共轭复数等于2i(a+bi)-(a-bi)=2bi=2ib=1z=a+iz的共轭=a-i=(a+i)*i=-1+aia=-1z=-1+i
e^z/(z^2*(2z+1))在|x+1|=2上有两个奇点,分别是z=0,二级奇点,和z=-1/2,一级奇点.则res(f(0))=(e^z/(2z+1))的导数再取z=0,即-1,同理z=-1/2
s:snake蛇,strawberry草莓,schedule世界杯,school学习,suggest建议z:zoo动物园,zebra斑马,zero零,zone地带,zeal热情iz:drizzle毛毛
设z=cosx+sinx,|z+iz+1|=[1+2cos(x+π4)]2+2sin2(x+π4) =3+22cos(x+π4)≥3-22=2-1.当x3π4时取得最小值2-1.
这道题由于有iz这个式子,设为指数形式的话不好求,设为三角形式要联立解3个量,所以设z=a+bi所以(a^2-b^2)+2abi-3ai+3b-3+i=0即(a^2-b^2+3b-3)+(2ab-3a
由题意有,复数z对应的点Z到(0,1)和(0,-1)的距离之和为2∴Z落在以复数i和-i对应的点为端点的线段上∴|z+1+i|=|z-(-1-i)|表示线段上点到(-1,-1)点的距离的最大最小值问题
∵复数z的实部为1,虚部为-2,∴z=1-2i∴1+3iz=1+3i1−2i=(1+3i)(1+2i)(1−2i)(1+2i)=−5+5i5=-1+i,故答案为:-1+i
f(z)=z/(z+1)*e^[2/(z+1)]设I=∫(|z|=π)f(z)dz因为在区域|z|
1+2iz=i,可得z=1+2ii=i(1+2i)i2=2−i故答案为:2-i
设z=a+bi,w=c+di根据w的共轭复数-z=2i条件可列出c-di-a-bi=2i,整理一下得到c-a-(b+d)i=0,实部虚部都为0可以得到c=a,d=-b-2w可以表示成a-(b+2)i带
假设z=a+bi由|z|=1,可知a²+b²=1|z+1/2|²=(a+1/2)²+b²|z-3/2|²=(a-3/2)²+b
由已知得dy/dx=(e^y+z)/(e^x+z),dz/dx=(z^2-e^(x+y))/(e^x+z),dz/dy=(z^2-e^(x+y))/(e^y+z),所以可以得到三式,e^ydx+zdx
设复数z=a+bi,则其共轭复数z'=a-bi(1),iz'+2z=3i即i*(a-bi)+2(a+bi)=3i化简得2a+b+(a+2b-3)i=0可知2a+b=0,且a+2b-3=0解得a=-1,
设z=a+bi则有a^2+b^2=1所以z+iz+1=(a+bi)+i*(a+bi)+1=(a-b+1)+(a+b)*i所以模(绝对值)等于根号(a-b+1)^2+(a+b)^2=根号2*(a^2+b
∵复数z的实部为-1,虚部为2,∴z=-1+2i,∴5iz=5i−1+2i=5i(−1−2i)(−1+2i)(−1−2i)=2-i,故答案为:2-i.
收敛域0<|z|<+∞由于展开式再收敛羽内一致收敛,积分和求和可交换在进一步利用重要积分注意到展开式没有-1次幂项,所以每项积分值为0所以总的积分值为0
设z=a+bi,|z|-.z=2-4i,则a=3,b=-4,∴z=3-4i.4+3iz=4+3i3−4i=(4+3i)(3+4i)25=i(4+3i)(4−3i)25=i.故选C.