e^-x²sinpx广义积分
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 18:01:26
先分部积分∫a^xx^2dx=(1/lna)∫x^2da^x=a^xx^2/lna-(1/lna)∫a^x2xdx=a^xx^2/lna-(1/lna)^2∫2xda^x=a^xx^2/lna-(1/
F(x)=Se^(-2x)dx=-1/2*Se^(-2x)d(-2x)=-1/2*e^(-2x)原积分=lim(x--->+∞)F(x)-F(0)=lim(x--->+∞)(-1/2*e^(-2x)+
求广义积分 ∫(0到正无穷)e^(-x)(cos ax-cos bx)/x dx ,b>a>0.再问:第一步是什么意思啊?再答:关于x取拉
∫e+∞1\x(lnx)^2dx=∫e+∞1\(lnx)^2dlnx=-1/lnx\e,+∞=-0+1/1=1所以收敛.
I=[∫e^(-x^2)dx]*[∫e^(-y^2)dy]=∫∫e^(-x^2-y^2)dxdy转化成极坐标=[∫(0-2π)da][∫(0-+无穷)e^(-p^2)pdp]=2π*[(-1/2)e^
用分步积分法,先把e^(-x)放到微分符号后面,然后使用分部积分公式:原式=-∫x^3de^(-x)=∫e^(-x)d(x^3)-(x^3)e^(-x)(一定要写上下限)注意上式中的后面一项在正无穷大
令x^2=t,将dx变换到dt,再用伽马函数就行了再问:原来是伽马函数!!谢谢了!!
∫(-∞~∞)e^x/(1+e^2x)dx=∫(-∞~∞)1/(1+e^2x)d(e^x)=lim(x-->∞)arctan(e^x)-lim(x-->-∞)arctan(e^x)=π/2-0=π/2
这个积分应该是收敛的;∫{x=1/e→e}[ln|x-1|/(x-1)]dx=∫{x=1/e→1-δ}[ln(1-x)/(x-1)]dx+∫{x=1-δ→e}[ln(x-1)/(x-1)]dx……δ→
∫(0,∞)x*e^(-x^2)dx=1/2∫(0,∞)e^(-x^2)d(x^2)=-1/2*e^(-x^2)(0,∞)=(-1/2)*(0-1)=1/2
直接算.=1/2∫(0,+∞)x^2e^(-x^2)dx^2=1/2∫(0,+∞)te^(-t)dt=1/2∫(0,+∞)e^(-t)dt=1/2
从0到正无穷大x*x*(e的负(x的平方))=∫(x^2)*e^(-x^2)dx=(∫x*e(-x^2)dx^2)/2=-(∫xd(e^(-x^2)))/2=-x*e^(-x^2)/2+(∫e^(-x
令√x=tx=t^2,dx=2tdtx=0,t=0,x=+∞,y=+∞∫[0,+∞)e^(-√x)dx=∫[0,+∞)e^(-t)*2tdt=-∫[0,+∞)2tde^(-t)=-2te^(-t)[0
=(-1/2)∫e^(-2x)d(-2x)=(-1/2)e^(-2x)|=(-1/2)[0-e^(-2)]=1/(2e²)
∫e^(k|x|)dx(x从负无穷大到正无穷大)=∫e^kxdx(x从0到正无穷大)+∫e^(-kx)dx(x从负无穷大到0)=[1/ke^kx](x从0到正无穷大)-[1/ke(-kx)](x从负无
∫[0,+∞](e^-x)sinxdx=∫[0,+∞]-sinxde^(-x)=-sinxe^(-x)|+∫[0,+∞]e^(-x)dsinx=∫[0,+∞]e^(-x)cosxdx=∫[0,+∞]-
∫(-∞,0]e^(2x)dx=1/2e^(2x)(-∞,0]=1/2
分成两部分,在负无穷到0上是∫e^(-kx)dx,0到正无穷上是∫e^(kx)dx两个式子一加就出来了