e^-√3x-2

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 19:06:18
e^-√3x-2
求不定积分∫[e^(2x)-3/e^x]dx

e……x+3e……-x+c望采纳再问:求详细再答:把这个式子分开,都是关于e的x次方的积分,这下会了吗再问:不会再答:这个式子可以化简为e^x-3e^-x这次会啦吗?

求不定积分 e^x/2-3e^x dx

∫e^x/(2-3e^x)dx=∫1/(2-3e^x)de^x=-1/3∫1/(2-3e^x)d(2-3e^x)=-1/3ln(2-3e^x)+C

求导数 Y=3^x*e^x-2^x+e e

Y'=(3^x)'e^x+3^x(e^x)'-(2^x)'+(常数)'=3^xln3*e^x+3^x*e^x-2^xln2+0=(3e)^xln3e-2^xln2答案(3e^x)*In3e+3^xe^

求极限lim(x~0)((e^x+e^2x+e^3x)/3)^1/x

lim(x~0)((e^x+e^2x+e^3x)/3)^1/x=lim(x~0)(e^(ln(e^x+e^2x+e^3x)/3)/x)=e^(lim(x~0)(ln(e^x+e^2x+e^3x)/3)

设随机变量X~e(2) e(4),求E(X+Y),E(2X-3Y^2)

e(2)e(4)E(X)=1/2,E(Y)=1/4D(X)=1/4,D(Y)=1/16E(X+Y)=E(X)+E(Y)=3/4D(Y)=E(Y^2)-(E(Y))^2E(Y^2)=D(Y)+(E(Y)

已知随机变量X服从正态分布N(0,1),求E(X^2)、E(X^3)与E(X^4)?

X~N(0,1)则Y=X^2~~卡方分布X^2(1)所以EX^2=1E(X^4)=DY+(EY)^2=2+1=3E(X^3)=0.pdf概率密度函数关于y对称.当然,也是可以像沙发同志那样做.不过有点

求不定积分 ∫[e^(4x) -1]/(e^x +1)dx (e^3x)/3-(e^2x)/2+e^x -x+C

∫[e^(4x)-1]/(e^x+1)dx=∫[e^(2x)+1](e^x+1)(e^x-1)/(e^x+1)dx=∫[e^(2x)+1](e^x-1)dx=∫[e^(3x)-e^(2x)+e^x-1

ln[(e^x+e^2x+e^3x)/3]'=[ln(e^x+e^2x+e^3x)+ln3]'=(e^x+2e^2x+3

都错了.应该是减去ln3ln[(e^x+e^2x+e^3x)/3]'=[ln(e^x+e^2x+e^3x)-ln3]'=(e^x+2e^2x+3e^3x)/(e^x+e^2x+e^3x)再问:ln((

求不定积分f[(e^3x+e^x)/(e^4x-e^2x+1)]dx

令e^x=u,则dx=du/u原式=∫(u³+u)/(u(u^4-u²+1))du=∫(u²+1)/(u^4-u²+1)du=∫(1+1/u²)/(u

求不定积分(1)dx/√x(1+√x)(2)dx/e^x+(e^-x)+2 (3)(tan^5x*sec^4x)dx

说明:(2)dx/e^x+(e^-x)+2写错了吧?正确的写法应该是dx/(e^x+(e^-x)+2).解(1):令t=√x,则x=t²,dx=2tdt.∴∫dx/√(x(1+√x))=2∫

求y=x-ln(2e^x+1+√(e^2x+4e^x+1))的导数

y=1-1/(2e^x+1+√(e^2x+4e^x+1))*(2e^x+1/2*((e^2x+4e^x+1))^(-1/2)*(2e^(2x)+4e^x)))再问:这我也知道就是不知道怎么化简再答:可

∫X^2 e^-X^3 dx.

原式=-1/3∫e^-X^3d(-X^3)=-1/3e^-X^3+c

用换元积分法计算不定积分∫(e^(2x)+2e^(3x)+2)e^xdx

设y=e^x,则x=lny,dx=dy/y∫(e^(2x)+2e^(3x)+2)e^xdx=∫((e^x)^2+2*(e^x)^3+2)e^xdx=∫(y^2+2*y^3+2)y*dy/y*=∫(y^

x^2*e^3x 求导数

a*b的导数等于a导b不导+b导a不导所以上式导数为2*x*e^3x+3*x^2*e^3x

∫ e^x-e^(-x)dx=e^x+e^(-x)|=e+1/e-2

再问:还是不太懂啊,就是你最后一步,e^x-(-e^x)你是直接把x=1和x=0带进去的吗?那为什么不是+2而是-2?自学中,所以请见谅再答:理解,我也是自学党这里用了微积分基本定理:牛顿- 

设随机变量X~e(2) Y~e(4),求E(X+Y),E(2X-3Y^2)

e(2)e(4)∴E(X)=1/2E(Y)=1/4D(X)=1/4D(Y)=1/16E(X+Y)=E(X)+EY=3/4E(2X-3Y²)=2E(X)-3E(Y²)D(Y)+(EY