e^sinxcosx的不定积分
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 10:00:19
∫dx/(sinxcosx)=∫dx/[(1/2)sin2x]=∫csc2xd(2x)=ln|csc2x-cot2x|+C
∫sinxcosx/(1+sin^4x)dx=∫sinx/(1+sin^4x)d(sinx)=∫1/(1+sin^4x)d(1/2*sin²x)=(1/2)∫d(sin²x)/[1
∫[sinxcosx/(sinx+cosx)]dx=-1/4∫[dcos2x/(sinx+cosx)]=-1/4cos2x/(sinx+cosx)-1/4/∫[cos2x*(cosx-sinx)/(s
∫(e^sinx)*sin2xdx(由倍角公式:sin2x=2sinxcosx)=2∫(e^sinx)*sinxcosxdx(cosxdx=d(sinx))=2∫(e^sinx)*sinxd(sinx
答:1.∫arcsinxdx可用分部积分原式=xarcsinx-∫x/√(1-x^2)dx=xarcsinx+√(1-x^2)+C2.∫e^(√x+1)dx换元,令√(x+1)=t,则x=t^2-1,
很简单.e是常数,原式=e∫sinxdx=-ecosx+C.再问:。。e*sinx是指数函数再答:指数用"^"来表示,我还以为是乘号,没有见过此类型积分,只有∫e^x*sinxdx,可以用分部积分,是
令t=tanx,则dt=sec²xdxsec²x=1+tan²x=1+t²∫sinxcosx/[1+(sinx)^4]dx.分子分母同除于cosx^4=∫tan
ln(tanx)/(sinxcosx)=[ln(tanx)/tanx]secx^2则不定积分ln(tanx)/(sinxcosx)dx=积分[ln(tanx)/tanx]secx^2dx=积分[ln(
∫dx/(sinxcosx)=∫(1/cos²x)/(sinx/cosx)dx,上下除以cos²x=∫sec²x/tanxdx=∫d(tanx)/tanx,(tanx)'
计算过程如图所示.
正解.引自吉米多维奇著《数学分析习题集》
∫1/(e^x-1)=∫(1-e^x+e^x)/(e^x-1)dx=-∫dx+∫e^x/(e^x-1)dx=-x+ln(e^x-1)+C欢迎追问
∫e^(x/2)dx=2e^(x/2)+c
分部积分∫e^xsinxdx=∫sinxde^x=sinx*e^x-∫e^xdsinx=sinx*e^x-∫e^xcosxdx=sinx*e^x-∫cosxde^x=sinx*e^x-cosx*e^x
这个是积不出来的没有原函数
无法表示为初等函数.再问:有求解的方法没·?再答:没有
你这个是概率积分问题!我在高中的时候也尝试过去求它的不定积分!但是后来看到一本书上说:这个积分是求不出来的!像这样求不出来的积分还有很多!像sinx/x,1/lnx,1/x*(ln(1-x)),arc
两个都是求不出来的,只能求近似值.这是我用计算器算的,都逃不开这个Li2函数.12那个ln(1-e^(-kx))的积分,也是求不出来的.我是用级数来求得.因为对于|x-1|<1, ln