e^x-e^-x-2x与x-sinx是否是等价无穷小
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 09:14:09
我觉得两边去对数反而不如直接硬算,这是我的算法.
令t=e^x>0则y=(t-1/t)/2t²-2yt-1=0解之取正值得t=y+√(y²+1)所以x=ln[y+√(y²+1)]反函数即为y=ln[x+√(x²
y=(x²-x)e^(1-x)y'=(2x-1)e^(1-x)+(x²-x)*e^(1-x)*(-1)=(2x-1-x²+x)e^(1-x)=(-x²+3x-1
打字不便,lim下的x→+∞省略,lim[xln(x+2e^x)/ln(x+e^x)]=lim{x[x+ln(2+x/e^x)/[x+ln(1+x/e^x)]}=lim[x(x+ln2)/x]=+∞再
用分步积分法∫x^2e^(-x)dx=-∫x^2d(e^(-x))=-x^2e^(-x)+∫2xe^(-x)dx+C1=-x^2e^(-x)-∫2xd(e^(-x))+C1=-x^2e^(-x)-2x
lim(x~0)((e^x+e^2x+e^3x)/3)^1/x=lim(x~0)(e^(ln(e^x+e^2x+e^3x)/3)/x)=e^(lim(x~0)(ln(e^x+e^2x+e^3x)/3)
令t=e^x,则dt=e^x*dx=tdxdx/[e^x+e^(2-x)]=dx/[t+(e^2/t)]=tdx/(t^2+e^2)=dt/(t^2+e^2)令t/e=u,t=eu,则dt=edu,d
Lim(x/e)^((x-e)^-1)=lim(1+(x-e)/e)^[(x-e)^-1]=lim(1+(x-e)/e)^[e/(x-e)]*(1/e)=e^(1/e)
X~N(0,1)则Y=X^2~~卡方分布X^2(1)所以EX^2=1E(X^4)=DY+(EY)^2=2+1=3E(X^3)=0.pdf概率密度函数关于y对称.当然,也是可以像沙发同志那样做.不过有点
∵lim(x->0)[ln(x+e^x)/x]=lim(x->0)[(1+e^x)/(x+e^x)](0/0型极限,应用罗比达法则)=(1+1)/(0+1)=2∴lim(x->0)[(x+e^x)^(
为了利用函数单调性不仿先用他法证明lnx<x设f(x)=lnx-x,(x>0)令f’(x)=1/x-1=0,x=1当01时,f’(x)
原式=∫(1+2e^x)dx=∫dx+2∫e^xdx=x+2e^x+C
令e^x=u,则dx=du/u原式=∫(u³+u)/(u(u^4-u²+1))du=∫(u²+1)/(u^4-u²+1)du=∫(1+1/u²)/(u
设y=x^(e^x)则lny=e^xlnx左右两边同时对x求导得y`/y=e^x(1/x+lnx)则y`=e^x(1/x+lnx)y=x^(e^x)e^x(1/x+lnx)
令y=e^(x^(e^x))则lny=x^(e^x)ln(lny)=e^x*lnx再对x求导,y'/(ylny)=e^x*(1/x+lnx)y'=ylny*e^x*(1/x+lnx)代入y,y'=【e
复合函数求导首先要把复合函数分解成简单函数,然后分别求导相乘.你的题中e^x是简单函数,但e^(-x)就不是简单函数,它由函数y=e^u和函数u=-x复合而成,所以这是的求导不能直接用你记的公式e^的
再问:还是不太懂啊,就是你最后一步,e^x-(-e^x)你是直接把x=1和x=0带进去的吗?那为什么不是+2而是-2?自学中,所以请见谅再答:理解,我也是自学党这里用了微积分基本定理:牛顿- 
答案不等于-1.lim(x→0)(1-e^(x^2))/x=lim(x→0)-x^2/x=0再问:为什么(e^x)-1等价与x我做出来等于-X。答案就是0了再答:x趋于0时,e^x-1等价于x,你题目