e^x-e^y=sin(xy)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 22:10:48
将y看成是关于x的函数即y=f(x)我们在求导的同时要记得y也要对x求导即dy/dx我们两边分别对x求导得e^x+e^y*dy/dx=cos(xy)*(y+x*dy/dx)移项e^x-y*cos(xy
.你要知道随机变量{X,Y}的联合分布的啊,比如是某个概率测度\mu(x,y)那么E(XY)=\intxyd\mu(x,y)
再问:大哥,你题目看错了。。。再答:哪里有错?再问:第一条等式就错了。。是sin(x+y)=sinx+siny。后面是cos(x+y)·(1+y')=cosx+cosy·y'?再答:OK,那我改下
再答:隐函数高阶求导。再答:
e^(xy)+sin(xy)=y(y+xy')e^(xy)+(y+xy')cos(xy)=y'y'=(ye^(xy)+ycos(xy))/(1-xe^(xy)-xcos(xy))
两边对x求导:[e^(2x - y)](2 - y') - [cos(xy)]*(y + xy')&nb
sin(x^2+y^2)+e^x-xy^2=0左右微分得到cos(x^2+y^2)*(2xdx+2ydy)+(e^x)dx-(y^2)dx-2xydy=0余下的求出dy就可以了
Cov(X,Y)=E(((X-E(X))(Y-E(Y)))根据协方差定义=E(xy-xE(y)-yE(x)+E(x)E(y))=E(xy)-E(x)E(y)-E(x)E(y)+E(x)E(y)=E(x
就是方程两边的每一项都对x进行求导,这里要将y看成是复合函数,y=y(x)比如x对x求导,则为1对y求导,则为y'对xy求导,应用求导运算法则,为y+xy'
思路:x+y=e^xy,两边取微分d(x+y)=d(e^xy)dx+dy=e^xyd(xy)dx+dy=e^xy(xdy+ydx)dx+dy=xe^xydy+ye^xydx(xe^xy-1)dy=(1
E=EX+EY
两边求导得y'·e^y+(y+xy')/(xy)+e^(-x)=0
要注意E(kX)=kE(X),k是常数E[(X-E(X))*(Y-E(Y))]=E[XY-XE(Y)-YE(X)+E(X)E(Y)]=E(XY)-E(X)E(Y)-E(Y)E(X)+E(X)E(Y)=
y'=2e^2xcos(e^2x)把y看成复合函数sint,t=e^m,m=2x.复合函数求导,等于三个分别求导的积
若独立则不相关,不相关不一定独立.设A,B独立P(A)P(B)=P(AB)cov(x,y)=E(XY)-E(X)E(Y)=E(X)E(Y)-E(X)E(Y)=0,因此A,B不相关.反之,A,B不相关c
第一题问得不清楚,看不懂.第二题,两边求导,得e^x+y'-(x'y+xy')=0整理得,dy=(e^x-y)*dx/(x-1)
e^(x+y)+sin(xy)=1e^(x+y)*(1+y')+cos(xy)(y+xy')=0y'*[e*(x+y)+xcos(xy)]=-[ycos(xy)+e^(x+y)]y'=-[ycos(x
化为:e^(ylnx)-e^y=sin(xy)两边对x求导:e^(ylnx)(y'lnx+y/x)-y'e^y=cos(xy)(y+xy')y'[lnxe^(ylnx)-e^y-xcos(xy)]=[