e^x在x=x0处的泰勒展开式
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 00:47:35
泰勒中值定理:若函数f(x.)在含有x的开区间(a,b)有直到n1阶的导数这个,你到下学期学了级数的知识,就能完全明白了不要太着急
用mathematica来帮你吧,直接输入:Series[1/(2+x),{x,1,5}]输出1/3-(x-1)/9+1/27(x-1)^2-1/81(x-1)^3+1/243(x-1)^4-1/72
直接在点处求n阶导数代入就行了
f(x)是x-x0的二阶无穷小=>lim(x->x0)f(x)/(x-x0)^2=A(A≠0)=>f(x0)=0,f'(x0)=0lim(x->x0)f(x)/(x-x0)^2洛必达法则=lim(x-
y'=-e^-x=-根号下e=-e^0.5x=-0.5
几阶,带有佩亚诺余项还是拉格朗日余项?再问:原题就是这么写的…再答:再答:简单的说任何一个式子都可以化成关于(X-X0)的n次多项式,其中x0可以是任意数字,打个比方,最简单的x^2这个式子,可以化成
lim[f(x0-x)-f(x0+x)]/x(x->x0)=-2lim[f(x0+x)-f(x0-x)]/[(x0+x)-(x0-x)](x->x0)=-2f'(x0)
1.泰勒展开只是对于一小段区域而言的,不是整体性质.2.为什么满足那个条件就能使这两个函数那么相似?(因为有一个余项所以不能叫相同)那个条件的意义是什么你知道吗?其本质是它们两个函数(记右边的逼近函数
令t=x-2,则x=t+2,f(x)=(t+4)^(1/2),展开成关于t的式子即可f(x)=2(1+t/4)^(1/2)因为(1+x)^μ=1+μx+(μ(μ-1)/2!)x^2+(μ(μ-1)(μ
题目明显有问题!f(x)=(e^x-e^(-x))/2没有极值点;其一阶导函数:f'(x)=(e^x+e^(-x))/2>0拐点(0,0),拐点切线斜率为1;导函数f'(x)=(e^x+e^(-x))
(arctan(x))'=1/(1+x^2)这个导数可以用基本公式1/(1+x)来展开
我晕,高等代数上不是经常有这个吗?
e^x=1+x+x^2/2!+x^3/3!+x^4/4!+…事实上,该式不仅在0的邻域成立,在实数域内也成立,甚至在复数域内,也成立.请看:正弦sinx=x-x^3/3!+x^5/5!-x^7/7!+
把x0代入Pn(x)就得到Pn(x0)=a0对Pn(x)求一次导,Pn'(x)=a1+2a2(x-x0)+3a3(x-x0)^2+...+nan(x-x0)^{n-1}所以Pn'(x0)=a1再求一次
记t=e^x>0,则f=(t+1/t)/2>=1,当t=1时取最小值即x0=0时,f(x0)=1为最小值.因为函数连续,因此它也是个极值点,其导数为0,因此切线平行于X轴.切线即为y=1.
改写函数 f(x)=sin[a+(x-a)]=sina*cos(x-a)+cosa*sin(x-a),再用上cos(x-a)和sin(x-a)的展开式 cos(x-a)=∑(n≥0)[(-1)
在两个plot直接加个holdon试试再问:我想知道具体怎么画泰勒公式的展开式再答:r=taylor(f,n,xa);是将函数f展成x-a的n-1阶泰勒多项式下面举个例子哈让你求x/sqrt(1-x^
ln(1+x)在x=0处的展开式是ln(1+x)=x-x^2/2+x^3/3-x^4/4+.+(-1)^(n+1)*x^n/n+.(-1再问:e..是的我二阶导求导求错了。另外问一下,如果遇到求f(0