e^z-xyz=0的所有偏导数

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 17:12:06
e^z-xyz=0的所有偏导数
求由方程e^z=xyz所确定的函数z=z(x,y)的一阶偏导数,看了你的答案,但不知道怎么得来的

这是隐函数,把z看成是x,y的函数.两边对x求导,得:e^z*z'x=yz+xy*z'x,这样得:z'x=yz/(e^z-xy)=yz/(xyz-xy)=z/(xz-x)两边对y求导,得:e^z*z'

高数求偏导:设z=z(x,y)是由方程(e^x)-xyz=0

将z对x的偏导记为dz/dx,(不规范,请勿参照)(e^x)-xyz=0两边对x求导数(e^x)'-(xyz)'=0e^x-x'yz-xy(dz/dx)=0e^x-yz-xy(dz/dx)=0xy(d

高等数学求偏导数设z=z(x,y)由方程lnx+xyz+lnz=0确定,求偏z/偏y.

lnx+xyz+lnz=0等号两边对y求偏导数等号左边共三项对y求导数(把x当作常数)第一项:0第二项:x(z+y*偏z/偏y)第三项:1/z*偏z/偏y三项相加等于0解出偏z/偏y=-xz^2/(1

关于隐函数求偏导设z=z(x,y)是由方程e^z-xyz=0确定的隐函数,求对x的偏导.

令F=e^z-xyzF对x的偏导数为Fx=-yzF对z的偏导数为Fz=e^z-xy由偏导公式z对x的偏导=-Fx/Fz=yz/(e^z-xy)

设z=f(x,y) 由方程sin z-xyz=0 所确定的具有连续偏导数的函数 ,求dz

设F(x,y,z)=sinz-xyz则F′(X)=-yzF′(y)=-xzF′(z)=cosz-xyz对x的谝导数等于-yz/(cosz-xy)z对y的谝导数等于-xz/(cosz-xy)dz=[-y

请问谁会解这道高数题?已知e^z-xyz=0,利用全微分形式不变性求出z对x和z对y的偏导数

两边对z微分e^zdz-d(xyz)=0=e^zdz-xydz-zd(xy)=e^zdz-xydz-zxdy-zydx所以,整理两边:(e^z-xy)dz=zxdy+zydx所以:dz=zx/(e^z

设函数 z=z(x,y)是由方程e^z-xyz=0 所确定的隐函数,求 əz/əy.

对y求导,e^z*z'(y)=xz+xyz'(y),əz/əy=z'(y)=xz/(e^z-xy)

设函数 z=z(x,y)是由方程e^z-xyz=0 所确定的隐函数,求 əz/əy

两边微分e^zdz-yzdx-xzdy-xydz=0(e^z-xy)dz=yzdx+xzdy∂z/∂y=xz/(e^z-xy)=xz/(xyz-xy)=z/(yz-y)

求由方程e^z=xyz所确定的函数z=z(x,y)的一阶偏导数

对x求导,e^z*z'(x)=yz+xyz'(x),z'(x)=yz/(e^z-xy)对y求导,e^z*z'(y)=xz+xyz'(y),z'(y)=xz/(e^z-xy)

设由方程e^z-xyz=0确定了函数y=y(x),则偏z偏x等于

e^z-xyz=0z=㏑x+㏑y+㏑z[偏z偏x]=1/x+(1/z)[偏z偏x](这里y看成常数)[偏z偏x]=(1/x)/{1-(1/z)}=z/[x(z-1)]

设Z=f(x+y+z,xyz),f具有二阶连续偏导数,求∂z/∂x.

f后面的1与2是下标.∂z/∂x=f1'+yzf2'

设z=z(x,y)是由方程(e^z)-xyz=0确定的隐函数,求偏导

对X的偏导=yz/(e^z-xy)对Y的偏导=xz/(e^z-xy)

求导e^z-xyz=0确定二元函数:z=f(x,y)

e^z-xyz=0e^z·∂z/∂x-(yz+xy·∂z/∂x)=0∂z/∂x·(e^z-xy)=yz∂z/W

y=y(x,z)由方程xyz=e^(x+y)确定,则y对x的偏导数是多少

xyz=e^(x+y)两边求关于x的偏导数(把z当成常数)∂(xyz)/∂x=∂e^(x+y)/∂xz∂(xy)/∂x=e^(x

1.z=z(x,y)是由方程x^2+y^2+z^2-xyz=2确定的二元函数,求x的偏导数

令F(x,y,z(x,y))=x^2+y^2+z^2-xyz-2则dz/dx=-Fx/Fz=-(2x-yz)/(2z-xy)2)令F(x,y,z(x,y))=x+siny+yz-xyz则dz/dx=-

由方程e^z-xyz=0所确定的二元方程Z=f(x,y)全微分dz

我帮你做一步下面的你应该就会了,

设方程e^x-xyz=0确定函数z=f(x,y),求偏z/偏x的二阶导

见图片,对式子进行二次求偏导就可以得到了.先得到一次偏导数的表达式,再对式子进行一次求偏导.可以得到二次偏导数关于一次偏导数的表达式.

大一的微积分~求μ=f(x,xy,xyz),z=φ(x,y)的一阶偏导数

f1表示f对第1个变量求导数,其余类推.∂μ/∂x=f1+f2(y)+f3(yz+xy∂φ/∂x)=f1+yf2+y(z+x∂φ/ͦ