e^z=1 根号3i
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 17:11:38
一样的把根号3+3i除过去,等式右边分子分母同乘根号3-3i可得z=(根号3i+3)/4
(1)设z=a+b*i,则z共轭=a-b*i由已知:z*z共轭=(a+b*i)(a-b*i)=a^2+b^2=4(1)|a+b*i+1+根号3i|=|(a+1)+(根号3+b)*i|=4即(a+1)^
z=(√3+i)/(1-i√3)^2z*z-=|z|^2=[|√3+i|/|(1-i√3)^2|]^2=|√3+i|^2/[|1-i√3|^2}^2=4/4^2=1/4.
z=√3i/(1+√3i)=√3i(1-√3i)/(1+√3i)(1-√3i)=(√3i+3)/(1+3)=3/4+√3i/4所以z的共轭复数的虚部是-√3/4
|z|=|1/(√3-i)|=1/√[(√3)^2+(-1)^2]=1/2
满足|z|=1的点都在单位圆上,|1+根号3*i-z|就是点1+根号3i到点z的距离.连接z与圆心O,与单位圆交于两点,离1+根号3i近的点就取距离最小,离1+根号3i远的点取距离最大.答案:1和3,
/>z=(√3+i)/21/z=2/(√3+i)=2(√3-i)/[(√3+i)(√3-i)]=2(√3-i)/(3-i^2)=2(√3-i)/4=(√3-i)/2
z=cos(-PI/3)+isin(-PI/3)=e^(-iPI/3)z^2=e^(-i2PI/3)=cos(-2PI/3)+isin(-2PI/3)=1/2-i3^(1/2)/2=z
设z=a+bi|a+bi+√3+i|=|(a+√3)+(b+1)i|=√[(a+√3)²+(b+1)²]=1|(a+√3)²+(b+1)²=1令a=-√3+si
题目有错!因为复数本身没有最大或最小值,复数的模才有最大或最小值.|1+√3i+z|≥|1+√3i|+|z|=2+2=4.即复数1+√3i+z的模,只存在最小值:4,不存在最大值!
|√3+i|=2=>|√3+i|^4=2^4|2-2i|=2√2=>|2-2i|^4=2^6|1-√3i|=2=>|1-√3i|^8=2^8∴|z|=2^(4+6-8)=4
/z/=根号<a^2+b^2>,同时/z/=1+3i-z=1+3i-(a+bi)=(1-a)+(3-b)i那么就有,/z/=根号<a^2+b^2>=(1-a)+(3-b)i,因为/z/只能是实数,那么
z=(1+根号3i/1-根号3i)^2z=(1+√3i/1-√3i)^2={(1+√3i)*(1+√3i)/【(1-√3i)*(1+√3i)】}^2=(-1/2+√3i)^2=-1/2-√3i/2|z
-1/2-根号3/2i
本题应该有误,条件过多.点击放大:
设z=a+bi可得:(1+i)(a+bi)=a+ai+bi+bi^2=(a-b)+(a+b)i=1+√3i所以可得:a-b=1a+b=√3解得:a=(√3+1)/2,b=(√3-1)/2|z|=√(a
1、设复数Z=a+bi,则有a+bi+1=(a+bi-1)i,即a+bi+1=(a-1)i-b,即有a+1=-b且b=a-1,解得a=0,b=-1.第二题同上方法,不算了.
e^z=-1-i=√2*e^(5πi/4),∴z=ln(√2)+i(2k+5/4)π,k∈Z.
设Z=a+bi则(根号3+i)z=-2i化作(根号3+i)*(a+bi)=-2i化简的(根号3-b)+(a+根号3b)i=-2i所以:根号3a-b=0a+根号3b=-2解得a=-1/2b=-根号3/2
复数z,且|z|=1,故设z=cosx+isinx,(0