eˆx siny=0确定了y是x的函数 求dy dx

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 14:01:04
eˆx siny=0确定了y是x的函数 求dy dx
计算∫(e^xsiny+x)dy-(e^xcosy+y)dx,其中L为从点(-2,0)沿曲线(逆时针)x^2/4+y^2

P=-(e^xcosy+y),∂P/∂y=e^xsiny-1Q=e^xsiny+x,∂Q/∂x=e^xsiny+1补线段L1:y=0,x从2到-2则L+

计算曲线积分∫L(e^(x^2)sinx+3y-cosy)dx+(xsiny-y^4)dy ,其中L是从点(-π,0)沿

先计算∫L3ydx=∫(从-pi到pi)3sinxdx=6.再计算∫L(e^(x^2)sinx-cosy)dx+(xsiny-y^4)dy=∫LPdx+Qdy,注意此时有aQ/ax=aP/ay,因此积

计算∫L(e^xsiny-3y)dx+(e^xcosy+x)dy,其中L是由点(0,0)到点(0,2)x^2+y^2=2

(e^xsiny-3y)对y求导得:e^xcosy-3(e^xcosy+x)对x求到得:e^xcosy+1考虑L1:(0,2)到(0.0)的直线段,则L和L1构成封闭曲线,逆时针方向,所围区域为D由格

∫ (e^xsiny-my)dx+(e^xcosy-m)dy其中L是按逆时针方向从圆周(x-1)^2+y^2=1上点A(

补上直线N:y=0、使得半圆y=√[1-(x-1)²]与直线N围成闭区域.P=e^xsiny-my、Q=e^xcosy-m∂P/∂y=e^xcosy-m、∂

设y=y(x)是由方程e^y+xy=e所确定的隐函数,求y''(0) 求二导

如图所示,最后求解是自上而下带入的

求由方程x^4-xy+y^4=xsiny所确定的隐函数的导数d^2y/dx^2在(0,0)处的值

红色圈出再问:那在试卷上怎么答呢再答:如果是大题目,直接写出这两个求导方程,像我这么叙述就行了,个人经验,仅供参考再问:能帮我再解以下另外那几个数学题吗再答:我尽力

设曲线弧L为x^2+y^2=ax(a>0)从点A(a,0)到点O(0,0)的上半圆弧,求∫(e^xsiny-ay+a)d

补L1:y=0,x:0→a则L+L1为封闭曲线∮(L+L1)(e^xsiny-ay+a)dx+(e^xcosy-a)dy用格林公式=∫∫(e^xcosy-e^xcosy+a)dxdy积分区域D为半圆=

设e(x+1)+xy=e^x+y确定了y是x的隐函数,则dy/dx x=0的值是

x=0则e+0=1+yy=e-1de(x+1)+d(xy)=de^x+dyedx+xdy+ydx=e^xdx+dy所以dy/dx=(e+y-e^x)/(1-x)所以原式=(e+e-1-1)/(1-0)

设方程xy-e的x次方+e的y次方=0确定了函数y=y(x),求dx分之dy.

xy-e^x+e^y=0对x求导则(xy)'=1*y+x*y'(e^x)'=e^x(e^y)=e^y*y'所以y-e^x+(x+e^y)y'=0y'=(e^x-y)/(x+e^y)所以dy/dx=(e

设e^(x+y)+cos(xy)=0确定y是x的函数求dy

f(x,y)=e^(x+y)+cos(xy)=0      //: 利用隐函数存在定理:f 'x(x,y)=e^

一道简单的高阶求导题设函数y=y(x)由方程y=xsiny所确定,求y"(0),有简便方法的更好啦~

y'=(siny)+xy'cosy则y'=siny/(1-xcosy)y'(0)=0y''=[y'cosy+(siny)(cosy-xy'siny)]/(1-xcosy)^2=>y''(0)=[(0+

设由方程e^z-xyz=0确定了函数y=y(x),则偏z偏x等于

e^z-xyz=0z=㏑x+㏑y+㏑z[偏z偏x]=1/x+(1/z)[偏z偏x](这里y看成常数)[偏z偏x]=(1/x)/{1-(1/z)}=z/[x(z-1)]

设方程xy+e^x ln y=1确定了函数y(x),则y'(0)=

将x=0代入方程得:lny=1,得y=e方程两边对x求导:y+xy'+e^xlny+y'e^x/y=0代入x=0,y=e得:e+lne+y'/e=0,得y'=-e(e+1)即y'(0)=-e(e+1)

求∫(e∧xsiny-y)dx+(e∧xcosy-1)dy,其中L为点A(2,0)到点B(0,0)的圆周x^2+y^2=

补上线段y=0则令P=e^xsiny-y,dP/dy=e^xcosy-1Q=e^xcosy-1,dQ/dx=e^xcosy∫_L(e^xsiny-y)dx+(e^xcosy-1)dy=∫∫_D[(e^

22.已知二元隐函数z=z(x,y)由方程z^2+yz=1-xsiny确定,求全微分dz

2zdz+zdy+ydz=-sinydx-xcosydydz=[-sinydx-(xcosy+z)dy]/(2z+y)再问:不是先等式两边同时对x求偏微分再对y求偏微分吗?再答:偏微分和全微分的概念不

计算(e^xsiny-3y+x^2)dx+(e^xcosy-x)dy,其中L为:2x^2+y^2=1

再问:r/���2��ô���İ���再答:�ſ˱ȱ任��dxdy=rd��dr/��2