求 函数 y=log1 2(x²-4x 5)的值域
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 10:54:20
因为y=(x−0)2+(0−3)2+(x−4)2+(0−5)2,所以函数y是x轴上的点P(x,0)与两定点A(0,3)、B(4,5)距离之和.y的最小值就是|PA|+|PB|的最小值.由平面几何知识可
无极值f(x,y)=x^2y^2-4x^2y-6xy^2+24xy对x求偏导得y(x-3)(y-4)对y求偏导得x(x-6)(y-2)稳定点为{0,0}{0,4}{3,2}{6,4}{6,0}又f对x
要使函数有意义:log12(x2-1)≥0,即:log12(x2-1)≥log121可得 0<x2-1≤1解得:x∈[-2,-1)∪(1,2]故答案为:[-2,-1)∪(1,2]
令t=x2-1>0,求得x>1,或x<-1,故函数的定义域为{x|x>1,或x<-1},且y=log12t,故本题即求函数t在定义域内的减区间.再利用二次函数的性质可得函数t在定义域内的减区间为(-∞
由x2-3x+2>0得x<1或x>2,当x∈(-∞,1)时,f(x)=x2-3x+2单调递减,而0<12<1,由复合函数单调性可知y=log0.5(x2-3x+2)在(-∞,1)上是单调递增的,在(2
∵3x-a>0,∴x>a3.∴函数y=log12(3x-a)的定义域为(a3,+∞),∴a3=23,解得a=2故答案为:2.
由-x2+6x-8>0,得2<x<4,设函数y=log12(−x2+6x−8)=log12t,t=-x2+6x-8,则抛物线t=-x2+6x-8的对称轴方程是t=3.∴在抛物线t=-x2+6x-8上,
∵f(x)=log12(x2+2x+4),∴f(-2)=log12(4-4+4)=log124,f(-3)=log12(9-8+4)=log125,∵y=log12x是减函数,∴log124>log1
做一道题给你示范下吧,后面的相信你可以举一反三.第一题:a=ln27/ln12(化对同底数对数,一般以e为底)=3ln3/(2ln2+ln3)(分解成质数)于是得ln2/ln3=(3-a)/(2a)再
y=-4/x0(2x+4)/x>0所以2X+4>0,x>0或者2x+40或者x
由x−1>02−x≥0,解得1<x≤2,∴函数f(x)的定义域为(1,2].又∵函数y1=log12(x-1)和y2=2−x在(1,2]上都是减函数,∴当x=2时,f(x)有最小值,f(2)=log1
求偏导对x求偏导得:4-2x对y求偏导得:-4-2y令上面两式等于零得:x=2y=-2所以极值f(x,y)=f(2,-2)=8
f(x,y)=4(x-y)-x^2-y^2=-(x^2-4x+4)-(y^2+4y+4)+8=-(x-2)^2-(y+2)^2+8
设y=k/x^2将x=3,y=4代入得k=36这也算与x的函数
令t=x2-5x+6=(x-2)(x-3)>0,可得x<2,或x>3,故函数y=log12(x2-5x+6)的定义域为(-∞,2)∪(3,+∞).本题即求函数t在定义域(-∞,2)∪(3,+∞)上的增
y=x+4/x易得x≠0当x>0时,y≥2√(x*4/x)即y≥4,当x<0时,y≥-2√〔(-x)*4/(-x∞)〕y≤-4即y的值域为(-∞,-4]∪[4,+∞)
∵t=x2-6x+17=(x-3)2+8≥8∴内层函数的值域变[8,+∞) y=log12t在[8,+∞)是减函数, 故y≤log128=-3∴函数y=log12(x2
假设:X=Y/XY=X/Y带入函数就是:F(y/x,x/y)=(y/x+x/y)/(y/x—x/y)=x²+y²)/(y²-x²)希望可以帮助你!
令u=|x-3|,则在(-∞,3)上u为x的减函数,在(3,+∞)上u为x的增函数.又∵0<12<1,y=log12u是减函数∴在区间(3,+∞)上,y为x的减函数.故答案为:(3,+∞)
∵函数y=log12(x2-3x+2),∴x2-3x+2>0,解得x<1,或x>2.∵抛物线t=x2-3x+2开口向上,对称轴方程为x=32,∴由复合函数的单调性的性质,知:函数y=log12(x2-