求(x,0)f(t)dt在[0,2]上的表达式
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 09:14:18
两边求两次导,然后就象解决微分方程一样解决它
f(x)=xsinx-x∫[0→x]f(t)dt+∫[0→x]tf(t)dtf(0)=0f'(x)=sinx+xcosx-∫[0→x]f(t)dt-xf(x)+xf(x)=sinx+xcosx-∫[0
在这个积分式中积分变量是t,对谁积分由'd'后边所跟的变量决定,其他量如果与积分变量不存在函数关系作为常量处理.虽然x是个变量,但在本积分式中它与t之间没有函数关系,因此积分中作为常量处理.╭x╭x|
f(x)=∫(1→x²)e^(-t)/tdtf'(x)=2x·e^(-x²)/x²=2e^(-x²)/xf(1)=0,∵上限=下限∫(0→1)xf(x)dx=∫
变上限积分你知道吗,先了解一下这个公式再问:老大有点没东就是你求导的时侯,第二步没好懂,你看它左边积分相当于右边是原函数,但是求导后怎么后面没变呢,老大我数学比较差,不好意思哈。谢谢再答:不好意思,右
∫(0,x)f(t-x)dt=e^(-x²)+1令u=t-x0
第一题:令f(x)=y方便计算对方程直接求导得y的导数为1.则令y=x+a代入原方程得x+a=x+2∫(0,1)(t+a)dt化简方程得a=1+2a求得a=-1所以y=x-1第二题:先化简方程∫(0,
∫(0->1)xf(t)dt=f(x)+xe^xf(x)=-xe^x+∫(0->1)xf(t)dt(1)∫(0->1)f(x)dx=∫(0->1)[-xe^x+∫(0->1)xf(t)dt]dx=∫(
令F(x)=∫(0→x)(x^2-t^2)f(t)dt=(x^2)∫(0→x)f(t)dt-∫(0→x)(t^2)f(t)dt则F'(x)=[2x∫(0→x)f(t)dt+(x^2)f(x)]-(x^
x+t=udx=duF(x)=∫(0,1)f(x+t)dtF(x)=∫(x,x+1)f(u)du=∫(0,x+1)f(u)du-∫(0,x)f(u)duF′(x)=f(x+1)-f(x)
先求极值:f(x)=∫[x,x+1](4t³-12t²+8t+1)dtf'(x)=[4(x+1)³-12(x+1)²+8(x+1)+1]-[4x³-1
f(x)=∫0到1|x-t|dt=∫0到x|x-t|dt+∫x到1|x-t|dt=∫0到x(t-x)dt+∫x到1(x-t)dt=0.5x^2-x^2+1-x^2-0.5+0.5x^2=0,5-x^2
f(x)=sinx-∫(0~x)(x-t)f(t)dt=sinx-x∫(0~x)f(t)dt+∫(0~x)tf(t)dt,之后两边对x求导f'(x)=cosx-[x'·∫(0~x)f(t)dt+x·f
192^(1/3)再问:......过程,谢谢......而且答案貌似是36^(1/3)再答:对于积分,t^2dt积分后为(t^3)/3,上限为f(x),下线为0.代入积分表达式得(f(x))^3除以
∫(0→x)f(t-n)e^ndt=sinxf(x-n)e^n=cosxf(x-n)=(cosx)/e^nf[(x+n)-n]=cos(x+n)/e^nf(x)=e^(-n)cos(x+n)再问:f(
一楼做的完全不对!此题应该先设:∫f(t)dt上限1下限0=m,所以原式可写为f(x)=x-2m.(1)对(1)式在(0,1)上再积分:∫f(x)dx上限1下限0=∫(x-2m)dx上限1下限0=m求
F(-x)=∫[0,-x]f(t)dt=∫[0,x]f(-u)d(-u)(令t=-u)=∫[0,x]-f(u)(-du)=∫[0,x]f(u)du=F(x),所以F(x)是偶函数.选B.
详细过程请见下图
土豆团邵文潮为您答疑解难,如果本题有什么不明白可以追问,请谅解,
两边求导,得f'(x)=x+f(x)即求微分方程y'=y+x对应齐次方程y'=y的解为y=Ce^x用常数变易法,设y=ue^xy'=(u+u')e^x,代入得u'=xe^(-x)u=-xe^(-x)-