求0到无穷e的pt方乘以COSt积分
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 12:53:58
e的(-x)次方从负无穷到0的定积分是-1/2+1/2*e(无穷次方)即:正无穷从答案上来看原函数应为:F(x)=(1/2)[∫e^(x)dx(积分下限为负无穷,上限为0)]+(1/2)[∫e^(-x
这个不定积分的原函数不能用初等函数表示的可以化为贝塔函数形式,∫(x^4)e^(-x^2)dx=∫(1/2)(x^3)e^(-x^2)dx^2作变量替换t=x^2得∫(1/2)[t^(3/2)]e^(
0,因为指数函数趋于零的趋势是很大的你可以使用洛必达法则,求N次导后极限就成了n!/(e^x),所以是零
(1).当a=—2,F'(x)=-2/x+2x=2(x-1)²/x所以当x>1时,F'(x)>0,所以函数在1到正无穷为增函数(2).F'(x)=a/x+2x=(2x²-a)/x若
求广义积分 ∫(0到正无穷)e^(-x)(cos ax-cos bx)/x dx ,b>a>0.再问:第一步是什么意思啊?再答:关于x取拉
首先由连续可知,a+e的bx次方等于零是无解的(否则分母等于0就是间断点了),若a=0,此外,b=0肯定是不行的,这个很好验证,当b再问:恩呢,正解~我再仔细研究一下再答:那么我还要提醒一下,在x--
I=[∫e^(-x^2)dx]*[∫e^(-y^2)dy]=∫∫e^(-x^2-y^2)dxdy转化成极坐标=[∫(0-2π)da][∫(0-+无穷)e^(-p^2)pdp]=2π*[(-1/2)e^
两次分部积分+解方程.因为:Jsinwte^(-pt)dt=-(1/w)Je^(-pt)dcoswt=(-1/w)[e^(-pt)coswt+pJcoswte^(-pt)dt]=(-1/w)[e^(-
同学,你学过正态分布没有?知道那个是怎么来的不?其实你用换元积分就可以求出来了再问:用换元积分怎么求的呢?谢谢你了!!!
分子分母同时乘上一个因子就可以了.这个因子可以是n的n+1次方或者是n+1的n次方之后,把这个表达式拆成两项,然后分别求极限就可以了.答案是e
∑(n=1--->∞)(n+1)x^n=∑(n=1--->∞)[x^(n+1)]'=[∑(n=1--->∞)x^(n+1)]'=[∑(n=0--->∞)x^n-x-1]'=[1/(1-x)-x-1]'
∫[0,+∞)x^n*e^(-sx)*dx=1/s^(n+1)∫[0,+∞)t^[(n+1)-1]*e^(-t)dt(设t=sx)=1/s^(n+1)*Γ(n+1)=n!/s^(n+1)
∫(0,∞)x*e^(-x^2)dx=1/2∫(0,∞)e^(-x^2)d(x^2)=-1/2*e^(-x^2)(0,∞)=(-1/2)*(0-1)=1/2
∫xe^xdx=∫xde^x=xe^x-∫e^xdx=xe^x-e^x+C=(x-1)e^x+C=(x-1)/e^(-x)+Cx→-∞则(x-1)/e^(-x)是∞/∞用落必达法则求极限分子求导=1分
看错,我已经修改了,如下图 代码如下:#include<stdio.h>#include<math.h>#define a 1#define&nb
dy=[-sin(√x)*1/2*x^(-1/2)-e^(-2x)*(-2)]dx=[1/2sin(√x)x^(-1/2)+2e^(-2x)]dx
此极限值为零.limx趋于无穷,x^2/(e^(x^2))=0原因是,分子是分母的高阶无穷大,在这里你可以记住,当x趋于无穷大是,lnx,x^a,e^x趋向无穷大的速度越来越快.这是基本的极限计算,希
000故极限为零
∫e^(-x)cosxdx=∫e^(-x)dsinx=e^(-x)sinx+∫e^(-x)sinxdx=e^(-x)sinx-e^(-x)cosx-∫e^(-x)cosxdx+C12∫e^(-x)co