求0到无穷大 e^x-1 xe^x(e^x 1)的定积分

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 12:08:34
求0到无穷大 e^x-1 xe^x(e^x 1)的定积分
求极限lim(x->负无穷大) (1/x+e^x)

∵x是无穷大量∴1/x是无穷小量lim(x->负无穷大)1/x=0e^x=1/e^(-x)∵x->负无穷大∴-x->正无穷大e^(-x)->正无穷大e^x=1/e^(-x)是无穷小量lim(x->负无

1/(x*ln(x)*ln(x)) 从e到无穷大的积分

换元t=lnxdt=dx/x所以原式=∫(dx/x)1/(lnx)^2=∫dt/t^2=-1/t+C=-1/lnx+C代入x=无穷ln无穷=无穷1/无穷=0得0代入x=elne=1得-1一减,积分=1

求极限x→0 lim(1/x-1/(e^x-1)),无穷大-无穷大形式的.

求极限x→0lim[1/x-1/(e^x-1)]x→0lim[1/x-1/(e^x-1)](∞-∞型)=x→0lim(e^x-1-x)/[x(e^x-1)](0/0型,用罗比塔法则)=x→0lim[(

高数 求极限x→0,lim(1+xe^x)^(1/x) 答案是e

这个用常用极限lim(1+x)^(1/x)=e就可以得出,很简单原式=lim(1+xe^x)^[(1/xe^x)e^x]=lime^(e^x)=e^1=e应该能看懂吧?看懂了就加分~再问:嗯。。看懂了

求定积分,积分0到1,xe的x次方dx

∫xe^xdx=∫xde^x=x*e^x-∫e^xdx=x*e^x-e^x+C=(x-1)*e^x+C所以定积分=(π/2-1)*e^(π/2)-(-1)*e^0=(π/2-1)*e^(π/2)+1

求定积分0到1,xe^(2x)dx

∫(0到1)xe^(2x)dx=1/2∫(0到1)xde^(2x)=1/2xe^(2x)-1/2∫(0到1)e^(2x)dx=1/2xe^(2x)-1/4e^(2x)+c

当x趋向0和无穷大时,e^1/x的极限分别怎么求

当x→∞,1/x→0,e^1/x→1当x→+0,1/x→+∞,e^1/x→+∞当x→-0,1/x→-∞,e^1/x→0

∫(cos^2 x)/(1+x^2)dx 求0到无穷大 求积分

将cos^2(x)展开成(cos(2x)+1)/2然后原式等于两项分别求积分,其中一项可以直接求不定积分然后得到pi/4,另外一项积分比较麻烦,我是用留数做的,如果不知道什么是留数,可以学习一下复变函

(xe^x)'-(e^x)'是怎么推到xe^x

前一个式子(xe^x)'-(e^x)'=(x'e^x+xe^x)-e^x=e^x+xe^x-e^x=xe^x

求计算lim(xe^(1/x)-x)

令t=1/x,x→∞等效于t→0,以下极限为t→0的情况原式=lim[(e^t)/t-1/t]=lim[(e^t-1)/t]由于e^t-1和t在t→0时为等价无穷小,因此这个极限为1或者可以用洛必达(

求∫{e^x(1+x)}/{(x-xe^x)^2} dx

看起来好高端的样子,青年人网上有名师指导,高数题就是很折磨人!

【高数微积题】已知e^x=xe^(θx)+1 求lim(x->o)θ ^表示次方

请点击图片查看解题过程. 回答补充:洛必达法则的含义是:对一分数形式函数而言,如果当自变量趋于某一确定值的时候,分子、分母同时趋近于0或无穷大,那么此时就可对两者(分子、分母)同时求导数(前

求广义积分xe^(-2x)dx,上限是正无穷大,下限是0,

如图再问:好,谢谢再答:不客气!请采纳!

定积分 ∫xe^(-x)dx 区间0到1 怎么做的,求过程

∫(0→1)xe^(-x)dx=-∫(0→1)xd[e^(-x)]=-[xe^(-x)]+∫(0→1)e^(-x)dx=-1/e-[e^(-x)]=-1/e-(1/e-1)=1-2/e

求不定积分 xe^x/(1+x^2)

分部积分法∫xe^x/(1+x)^2dx=-∫xe^xd[1/(1+x)]=-xe^x/(1+x)+∫(1+x)e^x×1/(1+x)dx=-xe^x/(1+x)+∫e^xdx=-xe^x/(1+x)

求不定积分∫(xe^x)/(e^x+1)^2

令y=e^x,x=lny,dx=1/ydy.原式=∫lny/(y+1)^2dy分部积分:令u=lny,v'=1/(y+1)^2则∫lny/(y+1)^2dy=-lny/(y+1)+∫1/y(y+1)d

求定积分,积分0到1,xe的x^2次方dx

∫xe^(x^2)dx=(1/2)∫e^(x^2)d(x^2)=(1/2)e^(x^2)+C(C为常数)代入上下限,可知原积分=(e-1)/2