e的-x2 负无穷到正无穷 π 积分 公式
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 04:00:36
∫x^4*e^(-x^2)dx=2∫x^4*e^(-x^2)dx(从0到+∞积分)=2∫t^2e^(-t)*1/[2√t]dt(设t=x^2)=∫t^(5/2-1)e^(-t)dt=Γ(5/2)=3/
x^2*e^(-x^2)dx=-(x/2)d(e^(-x^2))由上式用"分部积分公式",得到前面一部分是-(x/2)*(e^(-x^2))l上面正无穷,下面负无穷,这一项的值为零,后面一部分还是一个
symsxint(0.5*exp(-abs(x)),-inf,inf)使用的是int函数,有三个参数,第一个是积分函数,第二个和第三个分别是上下限
e的(-x)次方从负无穷到0的定积分是-1/2+1/2*e(无穷次方)即:正无穷从答案上来看原函数应为:F(x)=(1/2)[∫e^(x)dx(积分下限为负无穷,上限为0)]+(1/2)[∫e^(-x
^^你知道正态分布吧f(x)=[1/√(2pi)]*exp(-x^2)EX=0DX=1EX^2=DX+(EX)^2=1=∫x^2f(x)dx从负无穷到正无穷所以∫x^2*[1/√(2pi)]*exp(
I=[∫e^(-x^2)dx]*[∫e^(-y^2)dy]=∫∫e^(-x^2-y^2)dxdy转化成极坐标=[∫(0-2π)da][∫(0-+无穷)e^(-p^2)pdp]=2π*[(-1/2)e^
反常积分,发散再问:谢谢!!!那这个要怎么证它发散啊???再答:原函数是(1/2)ln(1+x^2),在+∞的值是﹢∞,不是有限值,故广义积分发散。
首先积分只有在a>0时有意义由于对称性从负无穷到正无穷对e^-at^2=2从0到正无穷对e^-at^2=2∫e^(-at^2)dt[∫e^(-at^2)dt]^2=∫e^(-ax^2)dx∫e^(-a
反常积分,I=arctanx|(-∞,+∞)=π/2-(-π/2)=π
用二重积分试试,具体的:I=∫exp(-x2/2)dxI=∫exp(-y2/2)dy所以令K=[∫∫exp(-(x2+y2)/2)dxdy]化为极坐标K=∫dθ∫exp(-r2/2)rdrθ:2pir
这就是一个“的他”函数,那个符号打不出来.这个式子前面是不是还有点东西?楼上2位的解法太复杂了,不推荐.直接写上“的他”(P‘--P).不用算,直接写上这个答案.记得加上前面的(1/根号2π倍h吧)构
同学,你学过正态分布没有?知道那个是怎么来的不?其实你用换元积分就可以求出来了再问:用换元积分怎么求的呢?谢谢你了!!!
f(x)底下加个X并不是表示求导,而是表示f(x)是随即变量X的概率密度函数,题目给出了X是均匀分布的,所以f(x)=1/pi,0
你看题目,是不是 x<0时,f(x)=0 所以在负无穷到0积分值为0 就直接从0到正无穷积分
不就是1啦原函数为e^xx=0e^0=1x=-infe^-inf=0所以为1