e的-x次方的积分从0到正无穷
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 08:05:28
∫x^4*e^(-x^2)dx=2∫x^4*e^(-x^2)dx(从0到+∞积分)=2∫t^2e^(-t)*1/[2√t]dt(设t=x^2)=∫t^(5/2-1)e^(-t)dt=Γ(5/2)=3/
e的(-x)次方从负无穷到0的定积分是-1/2+1/2*e(无穷次方)即:正无穷从答案上来看原函数应为:F(x)=(1/2)[∫e^(x)dx(积分下限为负无穷,上限为0)]+(1/2)[∫e^(-x
点击放大、再点击再放大:
^^你知道正态分布吧f(x)=[1/√(2pi)]*exp(-x^2)EX=0DX=1EX^2=DX+(EX)^2=1=∫x^2f(x)dx从负无穷到正无穷所以∫x^2*[1/√(2pi)]*exp(
I=[∫e^(-x^2)dx]*[∫e^(-y^2)dy]=∫∫e^(-x^2-y^2)dxdy转化成极坐标=[∫(0-2π)da][∫(0-+无穷)e^(-p^2)pdp]=2π*[(-1/2)e^
首先积分只有在a>0时有意义由于对称性从负无穷到正无穷对e^-at^2=2从0到正无穷对e^-at^2=2∫e^(-at^2)dt[∫e^(-at^2)dt]^2=∫e^(-ax^2)dx∫e^(-a
a>0.a>=1的时候,要看x趋于无穷的情况,此时x^(a-1)比起e^x,都是无穷小,而e^x*e^(-x^2)显然是收敛的.a再问:但是答案是a>1/2tangram_guid_135799679
|sinx^2/x^p|≤1/x^p,找到1/x^p的收敛域应该就可以了吧,只是提供个思路,未必正确.
∫dx/(1+x^4)=(1/2)[∫(1+x²)dx/(1+x^4)+∫(1-x²)dx/(1+x^4)].分子分母同除于x²=(1/2){∫[(1/x²)+
∫xe^(-k²x²)dx=(1/2)∫e^(-k²x²)d(x²)=(1/2)(1/-k²)∫e^(-k²x²)d(-
求原函数.再问:求详解
同学,你学过正态分布没有?知道那个是怎么来的不?其实你用换元积分就可以求出来了再问:用换元积分怎么求的呢?谢谢你了!!!
∫[0,+∞)x^n*e^(-sx)*dx=1/s^(n+1)∫[0,+∞)t^[(n+1)-1]*e^(-t)dt(设t=sx)=1/s^(n+1)*Γ(n+1)=n!/s^(n+1)
∫(0,∞)x*e^(-x^2)dx=1/2∫(0,∞)e^(-x^2)d(x^2)=-1/2*e^(-x^2)(0,∞)=(-1/2)*(0-1)=1/2
这个题有点技术含量印象中先要分部积分化简.楼下的接着做.
给你讲过了,我懒得打了.你做完之后把答案贴出来把
不就是1啦原函数为e^xx=0e^0=1x=-infe^-inf=0所以为1
详细积分过程, 包括取极限, 以及关键步骤的解释, 请见下图.点击放大,再点击再放大.(稍等几分钟,图已经传上)