求1 x^2arctanx的不定积分
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 19:24:42
原式=∫(x²+1)arctanxd(x²+1)=1/2∫arctanxd(x²+1)²=1/2*(x²+1)²arctanx-1/2∫(x
等价无穷小替换只能用于乘法运算,不能用于代数和其中的某一项.x-arctanx(1+x^2)不能直接替换为x-x(1+x^2).再问:你的意思是arctanx后的(1+x^2)为代数和运算故不能用等价
∫tan⁻¹x/[x²(1+x²)]dx=∫tan⁻¹xd(-1/x-tan⁻¹x)=tan⁻
∫(arctanx)/(x^2(x^2+1))dx=∫(arctanx)/x^2dx-∫(arctanx)/(x^2+1)dx=∫(arctanx)d(1/x)-∫(arctanx)darctanx=
用分部积分,设u=arctanx,v'=1/x^2u'=1/(1+x^2),v=-1/x,原式=-(arctanx)/x+∫dx/[x(1+x^2)]=-(arctanx)/x+∫(-x)dx/(1+
1/2*x^2-1/2*arctan(x)^2
分子是0,结果为0再问:具体步骤?
∫(x*arctanx)/[(1+x^2)^3]dx=∫(1/2)(arctanx)/[(1+x^2)^3]d(x^2+1)=∫(1/2)(arctanx)(-1/2)d[(x^2+1)^(-2)]=
lim(1/(arctanx)^2-1/x^2)=lim(x^2-(arctanx)^2)/(x^2arctanx^2)0/0型用洛必达法则(先将分母上arctanx~x再用洛必达):=lim[(2x
∫arctanx/(1+x²)^(3/2)dx=∫arctanxd[x/√(x²+1)],分部积分法,∫dx/(1+x²)^(3/2)=x/√(x²+1)=[x
看图片:\x0d\x0d
∫(arctanx)/(x^2(x^2+1))dxletx=tanadx=(seca)^2da∫(arctanx)/(x^2(x^2+1))dx=∫[a/(tana)^2]da=-∫ad(cota+a
∫arctan√x/[√x(1+x)]dx=∫2arctan√x/[1+(√x)²]d(√x)=∫2arctan√xd(arctan√x)=(arctan√x)²+C
我把做题的图片发给你,这里老是发不上来的
楼上解复杂了.点击放大、荧屏放大再放大:
分部积分法再答:
原式=∫xdx/(1+x^2)-∫arctanxdx/(1+x^2)=1/2*∫d(1+x^2)/(1+x^2)-∫arctanxdarctanx=1/2*ln(1+x^2)-1/2*(arctanx
分部积分,结果=X^ 3 ·arctanX/3-X^2/6+In|1+X^2|/6+C,发张图给你看下我的解题过程