e的-y次方二重积分
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 08:09:24
这题要用到二重积分的换元法……设x-y=u,x+y=v,得x=(v+u)/2,y=(v-u)/2,则在此变换下,积分区域边界曲线化为了v=1,u=2v,u=-v,新的积分区域为D'={(u,v)|0≤
选用极坐标系,积分区域D:0≤θ≤π/2,0≤r≤2/(sinθ+cosθ)I=∫[0,π/2]dθ∫[0,2/(sinθ+cosθ)]e^[sinθ/(sinθ+cosθ)]*rdr=∫[0,π/2
高等数学隐函数求导:设F(x,y)=y-e^(x*y)=0由隐函数存在定理得dy/dx=-Fx/Fy涵义为y对x的导数为负的F(x,y)对x偏导数除以F(x,y)对y的偏导数.所以求导结果为:y*e^
答:做出图像,得y=e^(2x)在y=e^x上方.且在(0,1)处有交点.∫0到1dx∫e^x到e^(2x)dy=e^2/2-e+1/2
e^(x+y)-e^x+[e^(x+y)+e^y]•dy/dx=0[e^(x+y)+e^y]•dy/dx=e^x-e^(x+y)=e^x•(1-e^y)dy/dx=
y=x与y=x^3在第一象限的交点为(1,1)该积分区域既是X-型的,又是Y-型的X-型:∫0到1∫x^3到x(e^x2)dydx=∫0到1(e^x2)(x-x^3)dx=1/2*[(2-x^2)*e
移项[exp(x+y)-exp(x)]dx=-[exp(x+y)+exp(y)]dy化简得{exp(x)/[1+exp(x)]}dx={exp(y)/[1-exp(y)]}dy积分得ln[1+exp(
1∫∫e^-y2(即系e的-y^2次方),D由X=1,Y=1,X=Y所围成X=1,Y=1,X=Y不能围成区域,请楼主再检查一下.2∫∫(根号X)dxdy,D={(x,y)x^2+y^2≤x}∫∫(根号
对称性有两个要求,一是积分区间(区域)关于某对称轴对称,而是积分函数按同样对称轴对称本题积分区域是对称的,但积分函数关于左右是不对称的.即e^(x+y)≠e^(-x+y) 上下实
xy=e^x-e^yd(xy)=d(e^x-e^y)xdy+ydx=e^xdx-e^ydy(x+e^y)dy=(e^x-y)dx则由dy/dx=(e^x-y)/(e^y+x)
关键是积分区域的处理! 另外膜拜一下一楼,这个题目也能用极坐标?
再问:求导的第一步y‘=。。。那里看不懂再答:
错,关于X轴对称.
lnx应为lny吧?区域由y=1,y=e,x=0,x=lny围成,画图.交点向x轴投影,得[0,1],此为x的范围.[0,1]内任取一点,作x轴的垂线,与区域的边界的交点的纵坐标是e^x与e,e^x在
∫∫(e^(y/x)dxdy=∫[0,1/2]dx∫[x^2,x](e^(y/x)dy=∫[0,1/2]dx{(xe^(y/x)|[x^2,x]}=∫[0,1/2](xe-xe^x)dx=ex^2/2
用极坐标∫∫e^(x^2+y^2)dδ=∫(0~2π)dθ∫(0~2)e^(ρ^2)ρdρ=2π∫(0~2)e^(ρ^2)ρdρ被积函数的原函数是1/2×e^(ρ^2),所以结果是π(e^4-1)
y=x及y=2x,y=1交点(1/2,1),(1,1)则∫∫e^y^2dσ=∫[0,1]∫[y/2,y]e^y^2dxdy=∫[0,1]e^y^2∫[y/2,y]dxdy=∫[0,1]e^y^2*y/