求a[5][5]矩阵的主副对角线之和.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 10:29:28
我的理解,你是一个9*9的矩阵,那么:dimsasintegerdimiasintegerdimjasintegerdimd(9,9)asinteger'假设二维数组为d,且主对角线元素的值为1-9s
#includeintmain(){inta[5][5]={{1,2,3,4,5},{1,2,3,4,5},{1,2,3,4,5},{1,2,3,4,5},{1,2,3,4,5}};intsum=0,
A=460-3-50-3-61|A-λE|=4-λ60-3-5-λ0-3-61-λ=(1-λ)[(4-λ)(-5-λ)+18]=(1-λ)(λ^2+λ-2)=-(1-λ)^2(2+λ)A的特征值为1,
由已知A的特征值为-1,2(相似矩阵有相同的特征值)所以A-E的特征值为-1-1,2-1,即-2,1(这也是个性质,任一教科书中都有)所以|A-E|=-2*1=-2(这也是性质:矩阵的行列式等于其所有
PrivateSubCommand1_Click()DimmArr(1To5,1To5),r%,c%,tmp%Forr=1To5Forc=1To5Randomizetmp=Int(Rnd*90)+10
反过来说,√-1那不就是i吗,[1,-√2i]单位化结果就是[-i,-√2].
101010-101求出来直接正交,都不用正交化
对每个特征值λ,求出(A-λE)X=0的基础解系,由基础解系构成P.Ax=0的基础解系为a1=(-2,1)'(A-5E)x=0的基础解系为a2=(1,2)'令P=(a1,a2)=-2112则P可逆,且
编程?……_(:з」∠)_再问:恩恩
|A-λE|=2-λ-20-21-λ-20-2-λr1+(1/2)(2-λ)r2-r3(只能尝试这样,-r3是后来发现正好凑出(1-λ)公因子)0(1-λ)(2-λ)/2-2(1-λ)-21-λ-20
首先,要求合同矩阵的话大前提是对称矩阵,因为一般的矩阵不一定可以对角化,否则若当标准型就没用了.其次,你说的做法是可以的,求出来的矩阵是对角矩阵,而且T是正交矩阵,或者你也可以把A与E放在一起,A上E
|A-λE|=-1-λ333-1-λ333-1-λ=5-λ335-λ-1-λ35-λ3-1-λ=5-λ330-4-λ000-4-λ=(5-λ)(-4-λ)^2.A的特征值为5,-4,-4(A-5E)X
正定,等价于所有主子式>0而主对角元就是所有的一阶主子式,故大于0
|A-λE|=(8-λ)(2-λ)^2A的特征值为2,2,8(A-2E)x=0的正交的基础解系为a1=(1,-1,0)^T,a2=(1,1,-2)^T所以属于特征值2的全部特征值为k1a1+k2a2,
根据“上三角矩阵A的主对角线上元素互异,”可以推得“上三角矩阵A有n个互不相等的特征值(为主对角线上元素)”所以可得A能与对角矩阵相似
|λ-20-1||-3λ-1-3|=﹙λ-1﹚²﹙λ-6﹚|-40λ-5|λ=1时|-10-1||-30-3||-40-4|的秩=1相应的齐次方程组有两个线性无关的解,即λ=1有两个线性无关
题目少了条件,必须加上对角元素互不相同才可如图证明结论.经济数学团队帮你解答,请及时采纳.
设n阶方阵:a11,a12,.a1n,a21,a22,.a2n,.,an1,an2,.ann,主对角线和副对角线上的元素之和:(a11+a22+a33+.+ann)+(a1n+a2(n-1)+a3(n
定义证明,定义证明再问:不会,其实书上的例题证明我就没看明白再答:就是罗列每个矩阵的每个元素,然后按照矩阵乘法做运算,看下结果是否相符。