求limx→0 sin3x 5x极限
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 15:08:44
洛必达显然limln(sin3x)/lnsinx=lim3cot3x/cotx=lim3tanx/tan3x=lim3x/3x(等价无穷小)=1
再问:limx→1,[x/(1-x)-(1/lnx)求极限]再答:再问:limx→0,[(3^x+5^x)/2]^1/x求极限再答:不客气了。
原式=e^[lim(x->0)(lncosx)/x]=e^[lim(x->0)(1/cosx×(-sinx))/1]=e^[lim(x->0)-tanx]=e^0=1
用洛必达法则即可limsin2x/x=lim2cos2x/1=2
解题关键:0/0型,用洛必达法则.满意请采纳!
limx→0[(x-sinx)/x²](0/0型)=limx→0[(1-cosx)/2x](0/0型)=limx→0(1/2)sinx=0.
当x→0+时,(1/x)→+∞;ln(1/x)→+∞;ln(1/x)x=ln(1/x)/(1/x);这是∞比∞型,满足洛必达法则使用条件,用洛必达法则求lim(x→0+)ln(1/x)/(1/x)=l
原式=lim[(1-sin2x/x)/(1+sin5x/x)]=lim[(1-sin2x/(2x)*2)/(1+sin5x/(5x)*5)]=[(1-lim(sin2x/(2x))*2)/(1+lim
利用洛比达法则limx^(1/2)lnx=limlnx/x^(-1/2)=lim(1/x)/(-1/2)x^(-3/2)=-1/2*limx^(1/2)=0
对分子分母分别求导,再取极限.sin3x求导=3cos3x,x求导=1,当x=0,极限为3cos0/1=3同样求导,分子=e^x/(e^x+1),分母=e^x.x趋向正无穷,分子除分母=1/(e^x+
lim(x→0)(tanx-sinx)/x (这是0/0型,运用洛必达法则)=lim(x→0)(sec^2x-cosx)=0
lim(x→0){(tanx-x)/[xtan(x^2)]}=lim(x→0){(tanx-x)/[x(x^2)]}=lim(x→0){(tanx-x)/(x^3)}(0/0)=lim(x→0){(s
limsin3x/sin5x=lim3x/(5x)=3/5========当x趋于0时,sin3x等价于3x,sin5x等价于5x
x-->0ln(1+x)-->xlim(x-->0)ln(1+x)/x=lim(x-->0)x/x=1再问:第一步怎么弄出来的?再答:无穷小再问:能解释的再详细一点吗?我还是不太懂再答:等价无穷小当x
分子与分母分别求导后,x→0+分子是无穷大,分母是0.所以结果还是无穷大.前面还有一个负号所以结果为负无穷大.
再问:第三题里面的a和c都能算出来了。那么b怎么算再答:我看错了,以为是趋于无穷大。再问:第2题最后一步(2/x)/e^x的极限为什么为0,2/x的极限是0,e^x的极限不是不存在吗?这种情况下怎么算
应该是limx→0(tanx-x)/x^3(tanx-x)/x^3=(sinx/cosx-x)/x^3=(sinx-xcosx)/x^3cosxx→0,cosx→1;所以limx→0(tanx-x)/