求x=acos^3t 图像

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 18:09:17
求x=acos^3t 图像
请问matlab中怎么画出x=Acos(wt),v=-Awsin(wt)(其中A,w均为常数,t为参数)的v-x图像?

A=1;w=2;ezplot(A*cos(w*t),-A*w*sin(w*t),[-1100])%ezplot的第三个参数是t的范围再问:谢谢,但是A,w不能假设为为1,2,要把它们当做固定的数但同时

X=acos^3t,y=asin^3t 所 围成的平面图形的面积

x=acos^3t,y=asin^3t是星形线,它的面积为∫ydx=4*∫asin^3t(acos^3t)'dt,t:π/2→0=-3*a^2∫sin^4t*cos^2tdt=-3a^2∫(sin^4

已知函数f(x)=Acos(ωx+φ)的图像如图所示,f(TT/2)=-2/3 则f(x)为

由图象可得最小正周期为2π3.所以f(0)=f2π3,注意到2π3与π2关于7π12对称,故f2π3=-fπ2=2/3.

星行曲线,x=acos^3t,y=asin^3t,求曲线所围成的面积?

理论上可以.先化为极坐标表示:p=a*(sin^6t+cos^6t)^(1/2),在积分.面积S=p^2(t)dt(积分上下限为2PI,0),不过这样积分更复杂.再问:能提供解题答案吗极坐标的我解的不

已知函数f(x)=Acos(wx+ф)的图像如图所示,且f(π/2)=-2/3,则f(0)=?

лгуолфпп+проумо=рол(орпу)олроцро\роуор=рпсмт\пупроорлуил\олцрл3бю=7\ропуролрло\7=орцул\7олппуа=иорйу

x=cos^3 t y=acos^3求曲率

x=cos³ty=acos³t曲线方程y=ax这是一条直线,所以曲率为零.

x=acos的3次方t y=asin3次方t 求2阶导数

(dy/dt)/(dx/dt)为一导,(dy/dt)/(dx/dt)对t的导数比上(dx/dt)为二导.再问:谁不会方法呀!我求过程呀!再答:呵呵!方法会,怎么能不会过程呢?你开玩笑吧!过程就是通过方

已知函数y=acos(2x+π3

∵x∈[0,π2],∴2x+π3∈[π3,4π3],∴-1≤cos(2x+π3)≤12,当a>0时,-a≤acos(2x+π3)≤12a,∵ymax=4,∴12a+3=4,∴a=2;当a<0时,12a

用格林公式求星型线 x=acos^3t,y=asin^3t的面积,

用格林公式求星型线x=acos³t,y=asin³t的面积.S=(1/2)∮xdy-ydx=[0,2π](1/2)∫(3a²cos⁴tsin²t+3

计算星形线x=acos^3(t),y=asin^3(t)的全长?

确实是只要计算第一象限部分的长度,再乘以4即可首先,弧微分ds=√[(dx)^2+(dy)^2]=√[(x')^2+(y')^2]dt=3a|sintcost|dt,x'、y'表示求导其次,弧长s=4

求由x=acos^2t,y=asin^2t所围成的图形的面积

x=a(cost)^2y=a(sint)^2a>0x+y=a交x轴于A,交y轴于Bx=0,y=aB(0,a)y=0,x=aA(a,0)Saob=(1/2)OA*OB=(1/2)a^2

已知函数f(x)=Acos(ωx+φ)的图像如图所示,f(TT/2)=-2/3 则f(0)等于多少

根据图象求出周期,注意2π/3与π/2关于7π/12对称;求出f(2π/3),就是f(0)的值.由图象可得最小正周期为2π/3,所以f(0)=f(2π/3),注意到2π/3与π/2关于7π/12对称,

已知函数f(x)=Acos(ωx+φ)的图像如图所示,f(TT/2)=-2/3 则f(x)

周期T=2(11π/12-7π/12)=2π/3ω=2π/T=3,f(x)=Acos(3x+φ)而f(¾π)=Acos(3×¾π+φ)=A,即cos(9π/4+φ)=1,所以φ=﹣

已知函数f(x)=Acos(wx+a)的图像如图所示 ,f(90°)=(-根号3)/2 则f(0)=

周期是(11/12-7/12)*2π=2/3π所以W=3/2π;由图可知原图像左移1/12π即a/w=1/12π【f(x)=Acos(w(x+a/w))a/w就是平移大小】所以a=1/8;在把f(90

求星形线的质心,x=acos^3t;y=asin^3t(0≤t≤π/2),a>0

应该是假设了线的线密度是一个定值,所以线的质量和长度成正比.ds是长度微元,ds=\sqrt(dx^2+dy^2).I是长度,乘以线密度就是总的质量了质心是位置矢量,定义为\int\vec{r}*dm

x=acos^3t y=asin^3t 在t=π/6时,求相应点切线方程和法线方程

dx/dt=3a(cost)^2(-sint)=-3asint(cost)^2,dy/dt=3a(sint)^2*(cost),dy/dx=(dy/dt)/(dx/dt)=[3a(sint)^2*(c