e的x平方的次方在0到1上的积分
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 11:58:46
求导f·x=e的x次方+2x-3令导函数=0不好解令gx=的x次方+2xhx=-3显然,一个是增函数,一个是常函数且只有一个交点,但是不在(0,1)范围内因为g0=1>-3所以在范围内没有极值点
f(x)=x^2*e^(-ax)定义域R求导f'(x)=2xe^(-ax)-ax^2e^(-ax)=e^(-ax)(-ax^2+2x)令g(x)==ax^2+2x=x(-ax+2)不难看出g(x)两个
∫[1→4]e^(√x)dx令√x=u,则x=u²,dx=2udu,u:1→2=∫[1→2]2ue^udu=2∫[1→2]ude^u=2ue^u-2∫[1→2]e^udu=2ue^u-2e^
函数y=3e^x-mx^2,则:y'=3e^x-2mx,因为x∈(3,+∞)时,函数单调递增,所以y'=3e^x-2mx>0,x∈(3,+∞)m0,所以f(x)>f(3)=e^2/2,所以m
再问:�����
先按shift,在按ln键,输入x的值ln键上面应该有e^x,这一项的吧
I=[∫e^(-x^2)dx]*[∫e^(-y^2)dy]=∫∫e^(-x^2-y^2)dxdy转化成极坐标=[∫(0-2π)da][∫(0-+无穷)e^(-p^2)pdp]=2π*[(-1/2)e^
∫x^2*e^(x^2)dx和∫x^2*e^(-x^2)dx,不定积分均无法用初等函数表示,但∫x^2*e^(-x^2)dx在[0,+∞)上的定积分可求出∫(0→+∞)x^2*e^(-x^2)dx=∫
F(x)=e^x(a-e^-x-2x^2)=a*e^x-2(x^2)*e^x-1F`(x)=a*e^x-2*(x^2)*e^x-4x*e^=e^x(a-2x^2-4x)1.a
同学,你学过正态分布没有?知道那个是怎么来的不?其实你用换元积分就可以求出来了再问:用换元积分怎么求的呢?谢谢你了!!!
(λ->0)lim∑e^(ξi)(△xi)=(n->∞)lim∑e^(i/n)(1/n)【其中ξi=i/n,△xi=1/n,i=1,2,...,n】=(n->∞)lim(1/n){e^(1/n)[1-
∫x^2e^(-x)dx=-∫x^2d[e^(-x)]=-x^2e^(-x)+∫e^(-x)dx^2=-x^2e^(-x)+∫2xe^(-x)dx=-x^2e^(-x)-2∫xd[e^(-x)]=-x
f(x)={ax²+1,x≥0{(a²-1)e^(ax),x0时,f(x)=ax²+1在[0,+∞)上单调递增,e^(ax)递增则需f(x)=(a²-1)e^(
函数f(x)=e的-x次方在区间【0,1】上的最小值为1/e,选B.再问:大哥,有过程没啊再答:e^-x在[0,1]为减函数,故在x=1,取最小值即e^-1=1/e
e^x:表示e的x次方设:f(x)=e^x+x-x²则:f(-1)=(1/e)-20则f(x)在(-1,0)内至少有一个零点即:e^x+x-x²=0在(-1,0)内至少有一个实根.
详细积分过程, 包括取极限, 以及关键步骤的解释, 请见下图.点击放大,再点击再放大.(稍等几分钟,图已经传上)
该积分为常数,所以其导数为0再问:能否写出详细步骤。谢谢再答:不需要步骤啊,这是根据定积分和导数的定义、性质确定的
对于这个问题应该先化简f(x)=(e的x次方-+e的-x次方-a)平方+a平方-2然后根据均值不等式就可以得出上面的结论一般情况下对于这类问题不能对(e的x次方-a)的平方和(e的-x次方-a)的平方