求y=x^2e^2x的20阶导数

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 07:08:37
求y=x^2e^2x的20阶导数
求函数f(x,y)=e^x(x+2y+y^2)的极值

f'x(x,y)=e^x(x+2y+y^2+1)=0f'y(x,y)=2e^x(1+y)=0解得x=0y=-1A=f''xx(x,y)=e^x(x+2y+y^2+2)=1B=f''xy(x,y)=2e

y=(e^x-e^-x)/2

令t=e^x>0则y=(t-1/t)/2t²-2yt-1=0解之取正值得t=y+√(y²+1)所以x=ln[y+√(y²+1)]反函数即为y=ln[x+√(x²

设随机变量X的概率密度为 f(x)=e^-x,x>0 求Y=2X,Y=e^-2x的数学期望

(1).EY=2E(X)=2(2)E(Y)=∫(-∞,+∞)f(x)e^(-2x)dx=1/3如有意见,欢迎讨论,共同学习;如有帮助,

求微分方程y'=e^(2x-y)的通解

y'=e^(2x)/e^ye^ydy=e^(2x)dxe^y=(1/2)e^(2x)+Cy=ln[(1/2)e^(2x)+C]

求微分方程的通解 dy/dx=e^(2x+y) [1/2(e^2x)]+e^y=c

dy/dx=e^(2x+y)即dy/dx=e^(2x)*e^y分离变量得e^(-y)dy=e^(2x)dx两边积分得到-e^(-y)=1/2e^(2x)+C1移项便得结论

求微分方程的通解.[1+2e^(x/y)]dx+ 2e^(x/y)*[1-x/y]dy=0.

令x/y=px=pyx'=p+p'y[1+2e^(x/y)]dx+2e^(x/y)*[1-x/y]dy=0[1+2e^(x/y)]dx/dy+2e^(x/y)*[1-x/y]=0(1+2e^p)(p+

y=e^x+e^x^2求dy|x=0,△x=0.1

y=e^x+e^x²,求dy|x=0,Δx=0.1.解dy=(e^x+2xe^x²)dx当x=0,dx=0.1时,dy=(1+0)×0.1=0.1.

设y=[e^x+e^(-x)]^2,求dy

dy=2[e^x+e^(-x)]*[e^x-e^(-x)]dx再问:��������ϸ����再答:��������ϸ��������Dz��谡̫��û�취再问:������y���

求y=(x^3+3x^2-3x-3)*e^-x的导数

y=(x^3+3x^2-3x-3)'*e^(-x)+(x^3+3x^2-3x-3)*[e^(-x)]'=(3x^2+6x-3)*e^(-x)-(x^3+3x^2-3x-3)*e^(-x)=(-x^3+

求微分方程y''-3y'+2y=x(e^x)的通解

通解为:Ce^x+De^(2x)-x(x/2+1)e^x其中C,D为任意实数由题意知特征方程为:λ²-3λ²+2=0,故λ=1或2故可设特解为:x(ax+b)e^x将其代入原方程解

求y''-2y'+5y=(e^x)sin2x

咋不是特征根了根据你解得的齐次的通解是y=e^x(C1sin2x+C2cos2x)右边含在齐次特解里再问:1.加减号打的时候打错了~2.由特征方程得出的解是含有复数,我知道可以是复数。3.这个我也知道

求下列函数的导数:y=2x^3+8x+5 y=xlnx y=x^2cosx y=e^x+1/e^x-1 y=e^x(x^

y=2x^3+8x+5y'=6x2+8y=xlnxy'=1+lnxy=x^2cosxy'=2xcosx-x^2sinxy=e^x+1/e^x-1y'=e^x-e^(1-x)y=e^x(x^3+lnx)

求y=x-ln(2e^x+1+√(e^2x+4e^x+1))的导数

y=1-1/(2e^x+1+√(e^2x+4e^x+1))*(2e^x+1/2*((e^2x+4e^x+1))^(-1/2)*(2e^(2x)+4e^x)))再问:这我也知道就是不知道怎么化简再答:可

求f(x)=e的x的2次方的20阶导数.即y=(e)^(x^2)

1048576*e^(x^2)*x^20*ln(e)^20+99614720*e^(x^2)*x^18*ln(e)^19+3810263040*e^(x^2)*x^16*ln(e)^18+762052

y=ln(x^2+e^x) 求Y'X

如果是求导数的话,y'=(2x+e^x)/(x^2+e^x)

求下列函数的导数:y=2^x , y=lnx , y=e^x

(2^x)'=2^xln2(lnx)'=1/x(e^x)'=e^x希望可以帮到你,如果解决了问题,请点下面的"选为满意回答"按钮,

求y=sin(e^2x)的微分y'

y'=2e^2xcos(e^2x)把y看成复合函数sint,t=e^m,m=2x.复合函数求导,等于三个分别求导的积

求微分方程y“+y'-2y=x^2e^2x的通解

齐次方程y''+y'-2y=0对应的特征方程为x²+x-2=0解为x1=1,x2=-2故齐次方程的通解为y=c1e^x+c2e^(-2x)设该非齐次方程的特解为y﹡=e^2x(Ax²

求反函数y=(e^x-e^-x)/2

由题意可知y^2+4=(e^x-e^(-x))^2+4=e^(2x)-2+e^(-2x)+4=(e^x+e^(-x))^2√(y^2+4)=e^x+e^(-x)y+√(y^2+4)=2e^xx=ln{