求z=x^2 y^2 1上任意一点P0(x0,y0)处的切平面与抛物面z=x
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 18:02:20
令y/x=ay=ax所以(a²+1)x²+4x+3=0x是实数所以△≥016-12a²-12≥0-√3/3≤a≤√3/3-√3/3≤y/x≤√3/3
令x+3=cosax=-3+cosa(y-4)²=1-cos²a=sin²ay=4+sinax-2y=-3+cosa-8-2sina=-(2sina-cosa)-11=-
点(x,y)在圆x²+y²=1上,设x=sinw,y=cosw,则:x+2y=sinw+2cosw则:x+2y的最大值是√5
设x-y/2=a,将之带入双曲线方程,最后等式中只存在a与x或者是a与y,然后根据x小于-3或x大于3与y是一切实数即可求得a的范围.
你给的不是圆的方程再问:直线与圆锥曲线的题目。再答:令y-6=t,可知,(x+3)^6+(t+2)^2=1,即求t/x的最值求t/x即使求圆锥曲线上横纵坐标的比值最大值为1,最小值为1/3
设点是(a,a²+3)直线x-y+2=0距离d=|a-a²-3+2|/√(1²+1²)=|a²-a+1|/√2a²-a+1=(a-1/2)&
椭圆x²+y²/(1/2)²=1,长半轴为1短半轴为1/2,同时把长半轴和短半轴扩大n倍,使其与双曲线xy=1相切,x²/n²+y²/(n/
y'=2X,y''=2.曲率K=│y''/(1+y'^2)^(3/2)│曲率半径:p=1/K=│(1+4x^2)^(3/2)│/2
x²+(y-2)²=3∴x=√3cosA,y=2+√3sinA∴2x+y=2√3cosA+2+√3sinA=√15sin(A+∅)+2∴最大值是√15+2令2x+y=t
利用三角函数代换,因为:(x+2)2+y2=1,所以可以设x=cosQ-2,y=sinQ则:①y-2x-1=sinQ-2cosQ+4-1=sinQ-2cosQ+3最大值:根号(1的平方+2的平方)=根
(x-2)²+(y-1)²=25圆心C(2,1),r=5C到直线距离d=|8+3+19|/√(4²+3²)=6所以PQ最小=d-r=1
设P(t,t^2+1),则|PA|^2=(t-0)^2+(t^2+1-4)^2=2t^2-6t+9=2(t-3/2)^2+9/2≥9/2,所以|PA|的最小值为(3√2)/2.
答:设点P为(p,e^p+p),到直线y=2x-4的距离L为:L=|2p-e^p-p-4|/√5=|e^p-p+4|/√5令g(p)=e^p-p+4g'(p)=e^p-11)当p0,g(p)为增函数,
设:改点为(x0,y0)根据距离公式算出平方和,得到一个二元函数表达式,对其求偏导数,得到稳定点,后验证黑塞矩阵的正定或者负定或者不定证明其为极小值点,证毕,得出答案,该点即为所求.(目测是正定从而取
设函数f(x,y,z)=x^2+y^2+z^2在点Q(x,y,z)处沿向量P的方向导数最大,因为函数在点Q处沿任意方向的方向导数的最大值是在梯度方向上取得,函数的梯度是向量(fx,fy,fz)=2(x
给你个好过程有题设点P(cosα,sinα)∴X+2Y=cosα+2sinα=根号5(sin(θ+α))sin(θ+α)∈(-1,1)∴最大值为根号5
令(x+y)/2=(y+z)/3=(z+x)/7=kx+y=2ky+z=3kz+x=7kx=3ky=-kz=4k带入不等式26k^2+6ak+1>0凑完全平方式下面的应该会了吧懒得做了
3x+4y=K与x^2+(Y-2)^2=1联立消去x使得到的y的方程有唯一解可解出K的值解为k1=3k2=13取大的那个K值就是3x+4y的最大值即13
设图像上任意一点坐标为(x,y),则到原点距离为d=√(xˆ2+yˆ2)再问:具体步骤!谢谢再答:两点之间距离公式为d=√((x1-x2)ˆ2+(y1-y2)ˆ