求∫tan√(1 x²)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 18:40:17
1、令x=sinθ,dx=cosθdθ∫dx/[1+√(1-x²)]=∫cosθ/(1+cosθ)dθ=∫(cosθ+1-1)/(1+cosθ)dθ=∫dθ-∫1/(1+cosθ)·(1-c
令a=tanx则a属于Ry=f(x)=(a-a+1)/(a+a+1)ya+ya+y=a-a+1(y-1)a+(y+1)a+(y-1)=0a是实数则方程有解所以判别式大于等于0(y+1)-4(y-1)>
不好意思,现在才看到.第四题不完整.前三题如图:
右边=2tanx/(1+sin²x/cos²x)=2tanx/[(cos²x+sin²x)/cos²x]=2tanx*cos²x=2sinx
显然d(tanx)=1/(cosx)^2dx所以原积分=∫(tanx)^10d(tanx)=1/11*(tanx)^11+C,C为常数
∵tanαtanβ是方程x²+(1-√3)x-3=0的两根∴tanα+tanβ=-(1-√3)=√3-1,tanα*tanβ=-3故cos(α-β)/sin(α+β)=(cosα*cosβ+
∫(x+1)的三次方/xdx=∫(x²+3x+3+1/x)dx=x³/3+3x²/2+3x+ln|x|+C∫tan²xdx=∫(sec²x-1)dx=
∫(1/x^2)tan(1/x)dx=-∫tan(1/x)d(1/x)=-∫sin(1/x)/cos(1/x)d(1/x)=∫1/cos(1/x)d(cos(1/x))=ln|cos(1/x)|+C希
说明:(2)dx/e^x+(e^-x)+2写错了吧?正确的写法应该是dx/(e^x+(e^-x)+2).解(1):令t=√x,则x=t²,dx=2tdt.∴∫dx/√(x(1+√x))=2∫
设y=(tan^2x-tanx+1)/(tan^2x+tanx+1)另tanx=a,则a属于Ry=(a^2-a+1)/(a^2+a+1)[a属于R]而a^2+a+1>0恒成立则由判别式法有;y(a^2
令a=tanx则a∈Ry(a²+a+1)=a²-a+1(y-1)a²+(y+1)a+(y-1)=0a是实数则方程有解判别式大于等于0(y+1)²-4(y-1)&
令a=tanx则a属于Ry=f(x)=(a²-a+1)/(a²+a+1)ya²+ya+y=a²-a+1(y-1)a²+(y+1)a+(y-1)=0a是
∫tan(x/2)dx=(-2)∫1/cos(x/2)dcos(x/2)=(-2)ln|cos(x/2)|+C希望对你有点帮助!再问:能在看看其他题吗?再答:尽力。
太简单,不必多说.∫tan²x/(1-sin²x)dx=∫tan²x/cos²xdx=∫tan²x*sec²xdx=∫tan²xd
当函数f(x)=∫tan^2(e^(2t+1))dt+A=A得到∫tan^2(e^(2t+1))dt=0因为tan^2(e^(2t+1))>=0所以只能是x=0所以f^(-1)(A)=0再问:sorr
∫tan²xdx=∫(sec²x-1)dx=tanx-x+C