求下列∑_(n=1)^∞▒x^(2n-1) (2n-1)级数的和函数
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 01:08:21
S=∑(n=1到∞)[n(n+1)/2]x^(n-1)积分得:F=∑(n=1到∞)[(n+1)/2]x^n再积分得:G=0.5∑(n=1到∞)x^(n+1)=0.5x^2/(1-x)求导得:F=0.5
拆开算原式=∑(2/(n-1)!)*X^n-∑(x^n)/n!=2*x*e^x-(e^x-1)要用到公式∑n从0到无穷=e^x,注意一下n的下限是0即可题目是一故要减去n=0时的值1.
可用求积求导法求和,如图.经济数学团队帮你解答.请及时评价.再问:求大神加我帮我舍友解题现在她们在考试拜托啦597651048~再答:请采纳。本人不用qq,只在知道答题。
第一题要用求导的方法求,不过求导之前要先左右都乘以x,第二题就直接积分
|sin(na)|
6,因为“=”是赋值号,在if中把x的值变为5,然后又加了1
使用比值比较法易知幂级数的收敛域为(-1再问:怎么从第二步得到最后结果的?再答:ln(1+x)=x-x^2/2+x^3/3-x^4/4+……ln(1+x²)=x²-(x²
将级数(n=0-∞)∑(n^2+1)x^n/(n!×3^n)分为两个级数(n=1-∞)∑n^2*(x/3)^n/n!和(n=0-∞)∑(x/3)^n/n!的和得形式,显然第二个级数是e^t的展开式的形
思路是:先求解Y的分布函数,用定义求:即FY(y)=Py(Y=0,否则为零变形一下得到;FY(y)=PX(-y^0.5=
∵f(x)=∑(n=1,∞)x^(n+1)/n!=x∑(n=1,∞)x^n/n!=x(e^x﹣1)收敛域(﹣∞,+∞)∴所求和函数S(x)=f'(x)=(x+1)e^x﹣1,收敛域(﹣∞,+∞).
∑(-2)/(3^n)=-2(1/3+1/3^2+.+1/3^n+...)=-2(1/3)/(1-1/3)=-1
已经做过:lim(1/[(n+1)3^(n+1)]/(1/n·3^n)=1/3,故收敛半径为3当x=3时,为调和级数,发散当x=-3时.为收敛的交错级数收敛域为[-3,3)
利用基本级数展开e^x=∑(∞,n=0)x^n/n!求和
设和为s(x),则s'(x)=∞∑n=2x^(n-2)=∞∑n=0x^n=1/(1-x),积分得s(x)=-ln(1-x),收敛域为[-1,1).
通过逐项求导,就可求和了.
级数为 ∑{n>=1}[x^(n^2)]/(2n),由于 lim(n→inf.)|{x^[(n+1)^2]}/(2n+2)|/|[x^(n^2)]/(2n)| =lim(n→inf.)|x^
后项比前项的绝对值的极限=|x|收敛域:|x|再问:麻烦再问一下,答案第三行级数∑(n=1,∞)x^(n+1)为什么等于x^2/(1-x)????再答:首项x^2,公比x的等比级数求和