求下列其次线性方程组的基础解系与通解X1 X2-X3-X4=0

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 06:01:20
求下列其次线性方程组的基础解系与通解X1 X2-X3-X4=0
求下列齐次线性方程组的通解,并求出基础解系.

X1+X2+X3+X4=0,2X1+3X2+X3+X4=0,4X1+5X2+3X2+3X4=0x2=x3+x4x1=-2x3-2x4x3,x4,任意取值

设α_1,α_2,α_3,⋯,α_m是其次线性方程组Ax=0的基础解系,β是非齐次线性方程组Ax=b

证明:设k1(α1+β)+k2(α2+β)+⋯+km(αm+β)+kβ=0则k1α1+k2α2+⋯+kmαm+(k1+k2+...+km+k)β=0.等式两边左乘A,由已知Aα

求下列非齐次线性方程组的通解及相应的齐次线性方程组的一个基础解系

增广矩阵=154-1333-1252223-21r2-3r1,r3-2r1154-1330-16-1044-70-8-524-5r2-2r3154-133000-430-8-524-5r3+6r2,r

老师,求下列非齐次线性方程组的全部解,并用基础解系表示.

增广矩阵A=1-12112-112310-1123-1035初等行变换为1-121101-30101-30102-602再初等行变换为1-121101-3010000000000则原方程同解变形为x1

第五题:求下列非齐次线性方程组的全部解,并用基础解系表示.

其增广炬阵为:   1  5  -1  -1  -1   1

设β1,β2是非其次线性方程组AX=b的两个不同解,a1,a2,a3是对应齐次线性方程组AX=0的基础解系,求AX=b通

选B.因为A中的三个向量a1-2a2+a3,-2a1+a2+a3,a1+a2-2a3线性相关.(这个相关性证明可由行列式1-21-21111-2的值为0得出.)

求下列其次线性方程组的基础解系(我只有这么点分了),老师们

14171417141723011→0523→052339180321300114所以,原方程组与方程组x1+4x2+x3+7x4=0,5x2+2x3+3x4=0,x3+14x4=0同解,因此原方程组

求下列齐次线性方程组的一个基础解系和通解:

系数矩阵A=[1114][2135][1-13-2][3156]行初等变换为[1114][0-11-3][0-22-6][0-22-6]行初等变换为[1114][01-13][0000][0000]行

求下列齐次线性方程组的一个基础解系和通解

系数矩阵A=[1111][2135][1-13-2][3156]行初等变换为[1111][0-113][0-22-3][0-223]行初等变换为[1111][01-1-3][000-9][000-3]

求下列齐次线性方程组的一个基础解系

齐次线性方程组只需考虑系数矩阵,因为增广矩阵的最后一列都是0.解:系数矩阵=1-24-721-213-12-4r2-2r1,r3-3r11-24-705-101505-1017r3-r2,r2*(1/

求下列齐次线性方程组的基础解系及通解

解:系数矩阵A=112334125658r3-2r1-r3,r2-3r1112301-5-70000r1-r21071001-5-70000方程组的基础解系为:(-7,5,1,0)^T,(-10,7,

求下列齐次线性方程组的基础解系

系数矩阵A=1-23-401-11130-31-43-2r3-r1,r4-r11-23-401-1105-310-202r1+2r2,r3-5r2,r4+2r2101-201-11002-400-24

求下列齐次线性方程组的基础解系:

点击[http://pinyin.cn/1bSzi81b4Oz]查看这张图片.

求下列齐次线性方程组的基础解系?

(2)解: 系数矩阵 A=124-3356-445-233824-19r2-3r1,r3-4r1,r4-3r1124-30-1-650-3-18150212-10r1+2r2,r3-3r2,r4+2r

求下列齐次线性方程组的基础解系,

A=1-8102245-1386-2-->r2-2r1,r3-3r11-8102020-15-5032-24-8r2*(-1/5),r3*(-1/8)1-81020-4310-431r1-2r2,r3

求下列齐次线性方程组的基础解系与通解.详见问题补充

求下列齐次线性方程组的基础解系与通解.x1+2x2-3x3=0,2x1+5x2-3x3=0,x1+4x2-3x3=0系数矩阵A=12-325-314-3r2-2r1,r3-r112-3013020r3

线性代数关于求其次线性方程组基础解系和非其次线性方程组基础解析的问题

都取0有什么意义?齐次方程组一定有零解,我们要求的是非零解.用x3,x4表示x1,x2,也就是说x3,x4是自由未知量,要求取值是线性无关的,比如x3=1,x4=0和x3=0,x4=1.也可以取其它线

其次线性方程组解的问题

第一个问题:克拉默法则仅适用于未知数个数等于方程个数的情况,当系数行列式不等于0的时候,方程组有唯一解,所以是具体的数,而当系数行列式不等于的时候,克拉默法则无能为力,所以就没有去求那些不唯一的解.你

线性方程组的基础解系怎么求

X1=4*X3-X4+X5;X2=-2*X3-2X4-X5.基础解系:b1=(4,-2,1,0,0)T,b2=(-1,-2,0,1,0)T,b3=(1,-1,0,0,1)T.