求下列级数(n 1)x的n次方在收敛区域的和函数

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 22:34:18
求下列级数(n 1)x的n次方在收敛区域的和函数
求级数的敛散性.lim(n趋近于无穷)1+n分之1和的n次方分之一.求这个级数的敛散性.

1+n分之1和的n次方的极限是e,所以级数的通项的极限非零,级数发散再问:1+n分之1和的n次方的极限是e就是问这个是怎么来的。再答:重要极限呐

判断此级数的敛散性:(n1-无穷)(-1)的n次方*根号下(n-根号n)-根号n 答案是发散.具体如何判断!

(-1)的n次方*根号下(n-根号n)-根号n当n是偶数时式子等于根号下(n-根号n)-根号n=[n-根号n-n]/[根号下(n-根号n)+根号n]=-根号n/[根号下(n-根号n)+根号n]-1/2

n的阶乘开n次方的极限是多少?例:求级数∑n!(x/n)∧n,如果用柯西判别法做的话,就会出现n

是不是x再问:��þ�����Ƿ����ŵġ����ðɣ���������ʦ��ʦ�þ���������n������š���������ȷ����1

c语言编程.计算级数前n项的和:1+x+x*x/2!+x*x*x/3!+...+x的n次方/n!.

doubley=k=s=t=1;这个分开来写:doubley=1,k=1,s=1,t=1;

求级数∑1/[n(2n-1)]*x^2n在其收敛区间内的和函数

再答:这道题我做了很长时间

已知,x的m次方=二分之一,x的n次方=3,求下列各式的值.

原式可拆为(x的m次方的3次方)与(x的n次方的2次方)相乘,结果为二分之一的3次方乘以3的平方=9/8再问:太给力了,你的回答完美解决了我的问题!

求级数∑(n+1)(n+2)x^n的收敛区间,并求和函数

令An=(n+1)(n+2)由比值审敛法:p=lim(n->无穷)An/An+1=1=>收敛半径R=1/p=1=>收敛域:(-1,1)下面来讨论x=-1和1处的敛散性:1.当x=1时,原级数E(n+1

求级数n的阶乘除以n的n次方的敛散性

用后一项比前一项.(n/(n+1))^n---->1/e故收敛.

-1的n次方,的级数收敛吗,求证明

∑(-1)∧n这个级数是不收敛的,+1-1震荡显然不收敛再问:可是部分和有界啊,部分和要么是-1要么是1要么是0。。再答:这不叫有界啊再答:我刚看了一下,部分和有界判断的是正项级数,这是交错级数,不能

确定级数∑x的n次方除以n的收敛域

R=a(n-1)/an=n/(n-1)=1;当x=-1时,是交错级数,极限->0x=1是时,是调和级数,不收敛所以[-1,1)是收敛域

判断下列级数的敛散性 1/(2的n次方+n)

因为lim(n->∞)[1/(2^n+n)]/(1/2^n)=1而Σ1/2^n收敛所以原级数收敛.

求级数 n的阶程除以{3的n次方} 在乘以x的n次方 的收敛性

记通项是an,当x不为0时,显然|a(n+1)/an|=|(n+1)x/3|,只要n+1>3/|x|,则有|a(n+1)/an|>1,|an|递增趋于无穷,级数发散.因此原级数只在x=0收敛.

若级数an(x-1)^n在x=0处收敛则级数在x=2de的收敛性 若级数an^2(x-1)^n在x=-1处收敛则级数在x

收敛根据定义,|an|=|(-1)^nan|再问:Yimoxilong是什么?再答:无穷小反写的3看下书上的定义

求函数f(x)=x的n次方(n∈N+)在x=a处的导数.

f(x)的导函数为:f'(x)=lim(x→0)[f(x+Δx)-f(x)]/Δx=lim(x→0)[C(n,0)x^n+C(n,1)x^(n-1)Δx+•••+C

求级数的散敛性问题:n平方/(1+1/n)的n次方的平方?急

∵分母的极限lim(n→∞)[(1+1/n)^n]^2=e^2是有限数而分子是无穷大量∴级数的一般项不趋于0,故级数发散

求级数∑(2n+1)x^n在其收敛区间内的和函数

∑(∞,n→0)(2n+1)x^nR=lim|2n-1/2n+1|=1x=1时∑(∞,n→0)(2n+1)发散,x=-1时∑(∞,n→0)(-1)^n(2n+1)也发散,所以收敛域为(-1,1)令s(

级数的计算求级数∑(n从2开始)1/[(n^2-1)2^n].我在计算过程中将∫(1+x)dx写成∫(1+x)d(1+x

结果(1)正确∫(1+x)dx为不定积分时,两种做法都正确,因为后面都要加常数C;但是注意:题目中∫(1+x)dx为从0到x的定积分,下面两种详细算法:∫(1+x)dx=∫(1+x)d(1+x)=[(