求下列组合的偏导数或全导数z=x^2 y-xy^2
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 00:36:58
再问:对x求后面不是还可以约分吗再答:对,没注意,可以约分的
y=e^xcosx+根号2y'=e^xcosx+e^x(-sinx)y'=e^x(cosx-sinx)y=e^(-2x)dy/dx=-2e^(-2x)dy=-2e^(-2x)dxy=1-xe^xdy/
Z=f'x(x,y)=xy*[x^(xy-1)]*yZ=f'y(x,y)=xy*[x^(xy-1)]*x再问:答案是Z=f'x(x,y)=yx^xy(lnx+1),Z=f'y(x,y)=x^(xy+1
z=xy+x/y对x的偏导数=y+1/y对y的偏导数=x-x/y^2
合并同类项和化简自己化简一下,上网本屏幕太小,不方便帮你化简合并同类项了.
Z=X^2+Y^2∂Z/∂X=2X∂Z/∂Y=2Y∂^2Z/∂X^2=2∂^2Z/∂Y^2=2ͦ
全是二元函数,二元函数求偏导的实质就是一元函数求导,没什么区别.对x求偏导的时候把y看做是常数就可以了,对y求偏导把x看成是常数就可以了没什么复杂的再问:答案是?再答:别只想着要答案啦,解答案不难,关
求偏导时就是把其他变量当做常数.所以,对x的偏导为y*x^(y-1),对y的偏导是x^y*lnx.
z=(1+xy)^y=e^[(ln(1+xy))*y]取对数:lnz=y*ln(1+xy)求全微分:dz/z=(1/(1+xy))y*ydx+ln(1+xy)dy+(xy/(1+xy))dy=(1/(
额,自己看看数分书领悟吧.自己弄懂了才能以不变应万变.
ez/ex=1/(x+y^2)*1=1/(x+y^2)ez/ey=1/(x+y^2)*(2y)=2y/(x+y^2)dz=ez/exdx+ez/eydy=1/(x+y^2)dx+2y/(x+y^2)d
令u=xy,则z对x的偏导就变为(dz/du)*(偏u/偏x),然后按这样的顺序算就行了,同理,对y也一样,不知道这样说你明不明白
のz/のx=cos(y√x)·[y/(2√x)]=[y/(2√x)]cos(y√x)のz/のy=cos(y√x)·√x=√xcos(y√x)再问:谢谢您,您的根号是怎么打上的?
△f=1/(z+h)-1/z=-h/[z(z+h)]f'(z)=lim(h->0)△f/h=lim(h->0)-h/[z(z+h)]/h=-lim(h->0)1/[z(z+h)]=-1/z×z=-1/
z=y+cosx+x再问:偏导数,不是导数再答:这不就是偏导数吗再问:哦,有全过程吗,谢谢再答:ðz/ðx=y+cosxðz/ðy=x
先求偏导数:zx=ycos(x-y)zy=sin(x-y)-ycos(x-y)明显,两偏导数都连续故全微分存在dz=zxdx+zydy=ycos(x-y)dx+[sin(x-y)-ycos(x-y)]