求不定积分∫lnx (x2 1)dx
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 16:46:46
∫lnxdx=xlnx-∫xdlnx=xlnx-∫x*1/xdx=xlnx-x+C所以原式=∫(1/e,1)(-lnx)dx+∫(1,e)lnxdxc=-(xlnx-x)(1/e,1)+(xlnx-x
原式=-∫lnxd(1/x)=-lnx*1/x+∫1/x*dlnx【分部积分】=-lnx/x+∫1/x²dx=-lnx/x-1/x+C再问:答案是错的哦,还有=-∫lnxd(1/x)不是应该
∫e^(-2x²+lnx)dx=∫e^(-2x²)*e^lnxdx=∫e^(-2x²)*xdx=∫e^(-2x²)d(x²/2)=(1/2)(-1/2
∫lnx/√xdx=2∫lnxd(√x)分部积分=2√xlnx-2∫√x/xdx=2√xlnx-2∫1/√xdx=2√xlnx-4√x+C希望可以帮到你,如果解决了问题,请点下面的"选为满意回答"按钮
∫√lnx/xdx=∫√lnxdlnx=1/(1/2+1)*(lnx)^(1/2+1)+c=2/3*(lnx)^(3/2)+c
运用分部积分法可∫lnx/x²dx,首先将1/x²推进d里,这是积分过程=∫lnxd(-1/x),然后互调函数位置=-(lnx)/x+∫1/xd(lnx),将lnx从d里拉出来,这
∫(lnx)^3/x^2dx=∫(lnx)^3d(-1/x)=-(lnx)^3/x+∫3(lnx)^2(1/x)(1/x)dx=-(lnx)^3/x-3∫(lnx)^2d(1/x)=-(lnx)^3/
∫lnx/√x*dx=2∫lnxd√x=2√x*lnx-2∫√x/xdx=2√x*lnx-4√x+C
∫(lnx-1)/ln²xdx=∫1/lnxdx-∫1/ln²xdx=x/lnx-∫xd(1/lnx)-∫1/ln²xdx=x/lnx-∫x*-1/ln²x*1
只有自己做才会有真正的提高.
再问:选u是不是哪个计算方便选哪个哦?再答:对后式分部积分,前式不动,即可求出。选u选哪个以方便计算,不能越积越复杂。再问:那问下啊,碰到反三角函数、对数函数、幂函数、三角函数、指数函数这5类的其中两
√(2lnx+1)的原函数不能够用初等函数表示
∫lnx/[x√(1+lnx)]dx令t=√(1+lnx),则lnx=t^2-1,x=e^(t^2-1),代入得∫lnx/[x√(1+lnx)]dx=∫lnx/[√(1+lnx)]d(lnx)=∫(t
(∫(√lnx)/x)dx=∫(√lnx)d(lnx)=(2/3)(lnx)^(3/2)
∫1+lnx/x*dx=∫1/x*dx+∫lnx/x*dx=lnx+∫lnxdlnx=lnx+(lnx)^2+c再问:请问这是完整答案吗,因为本人是数学白痴,不好意思再答:是的完整的答案
∫[ln(lnx)+1/lnx]*dx=∫ln(lnx)*dx+∫1/lnx*dx=xln(lnx)-∫x*d(ln(lnx))+∫1/lnx*dx=xln(lnx)-∫x*1/lnx*1/x*dx+
∫ln(x/2)dx=xln(x/2)-∫x*[ln(x/2)]'dx=xln(x/2)-∫x*1/(x/2)*(1/2)dx=xln(x/2)-∫dx=xln(x/2)-x+C
答:∫√lnx/xdx=∫√lnxd(lnx)=(2/3)*(lnx)^(3/2)+C
d∫(x/lnx)dx=(x/lnx)dx