求不定积分∫x sinx 1 cosx)dx
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 11:24:59
∫cos(lnx)dx=∫xcos(lnx)d(lnx)=∫xd(sin(lnx))=xsin(lnx)-∫sin(lnx)dx=xsin(lnx)-∫xsin(lnx)d(lnx)=xsin(lnx
∫cosx/(sinx+cosx)dx=(1/2)∫[(cosx+sinx)+(cosx-sinx)]/(sinx+cos)]dx=(1/2)∫dx+(1/2)∫(cosx-sinx)/(sinx+c
∫xe^xdx=∫xd(e^x)分部积分法:=xe^x-∫e^xdx=xe^x-e^x+c=(x-1)e^x+c有不懂欢迎追问再问:求抛物线y=x*2与直线y=1所围成的图形的面积~谢谢~再答:S=∫
∫1/(1+sin2x)dx=∫1/(1+2sinxcosx)dx=∫1/[cos²x(sec²x+2tanx)]dx=∫1/(tan²x+2tanx+1)d(tanx)
∫(sin2x+cos3x)dx=积分:sin2xdx+积分:cos3xdx=1/2积分:sin2xd(2x)+1/3*积分:cos3xd(3x)=-1/2*cos2x+1/3*sin3x+C(C是常
公式不好表达,请看截图
sin(x+π/2)=sinxcosπ/2+cosxsinπ/2=cosx∫dx/sin(x+π/2)=∫dx/[2sin(x/2+π/4)cos(x/2+π/4)]=∫cos(x/2+π/4)dx/
令x=2u,则:u=x/2,dx=2du.∴∫[1/(3+cosx)]dx=2∫[1/(3+cos2u)]du=2∫{1/[3+2(cosu)^2-1]}du=2∫{1/[2+2(cosu)^2]}d
∫arctanxdx=x*arctanx+∫x/(1+x²)dx=x*arctanx-1/2*ln(1+x²)+C
∫(x^2-1)sin2xdx先括号拆开=∫x^2*sin2xdx-∫sin2xdx=-1/2*∫x^2dcos2x-1/2*∫sin2xd2x先凑微分=-1/2*∫x^2dcos2x-1/2*∫si
利用公式:∫uv'=uv-∫u'v∫xcoswxdx=x/w×sinwx-1/w×∫sinwxdx=xsinwx/w-1/w×(-1/w×coswx)=xsinwx/w+coswx/w²
书上都有的呀具体哪里不懂应该问具体点,这么泛不好回答的
cotx=cosx/sinxcotxdx=cosxdx/sinx=dsinx/sinx=d(lnsinx)∫cotxdx=ln|sinx|+C
∫cos²xdx=∫cosxdsinx=sinxcosx-∫sinxdcosx=sinxcosx+∫sin²xdx=sinxcosx+∫(1-cos²x)dx=sinxc
∫tanxdx=∫sinx/cosxdx=-∫1/cosxd(cosx)=-ln|cosx|+C
∫cosx/xdx是超越积分,已经被证明了它的不定积分不可积.因此是没有答案的.只能求定积分,而且求定积分只能求特殊点,也不能用牛顿-莱布尼茨公式.你在哪里看到的题目呀?
它的原函数无法用初等函数表达.再答:有不懂之处请追问,望采纳。
∫ln(x/2)dx=xln(x/2)-∫x*[ln(x/2)]'dx=xln(x/2)-∫x*1/(x/2)*(1/2)dx=xln(x/2)-∫dx=xln(x/2)-x+C