求二次型 f=XTAX 的矩阵A
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 17:18:21
f(x1,x2,x3)=(x1-x2)^2+(x2-x3)^2=x1^2-2x1x2+2x2^2-2x2x3+x3^2A=1-10-12-10-11
没有这么一说,是你做的那道题里A有特征值λ为1吧
必要条件再问:f正定推不出A对角元为正;A对角元为正→f正定?那么:f正定为什么推不出A对角元为正呢?再答:f正定,一定有A的对角元为正!εi'Aεi=aii>0.反之不对再问:哦哦,写错了..1】f
由A是实对称矩阵,存在正交矩阵C,使B=C'AC为对角阵(C'表示C的转置).B与A相似且合同,可得A的正惯性指数=A的正特征值的个数.由A³=A,可知A的特征值满足λ³=λ,即只
(2)求A的特征值和特征向量特征向量.把特征向量正交化单位化,然后构成正交矩阵,极为所求.这个就自己动手吧.(3)看特特征值的符号判断是不是正定二次型.再问:
楼主命题有误,必须加上A为正规矩阵,即A'*A=A*A',本命题才成立.反例:令A=[11;01]x=[0.6;-0.8]'为长度为1的向量.则:norm(x)^2=x1^2+x2^2=1.二次型f(
A,B为n阶实对称矩阵,若对于任意n维向量X,都有XTAX=XTBX,则特别的,对于单位坐标向量组e1,e2,...,en也有eiTAei=eiTBei,(i=1,2,...,n)所以(e1,e2,.
你这个问题有一个证明方法就是证明A至少存在一个非零的特征值.假设A不存在一个非零的特征值,所有的特征值都是0,则A=0,矛盾,因此A至少存在一个非零的特征值,假设其对应的特征向量为X,那么XTAX就不
假定A已经是实对称矩阵了,并且范数是2-范数对A做谱分解A=QDQ^T,注意||Q^Tx||=||x||=1即可,余下的很简单,你自己算再问:感脚回答得好高深啊。。什么范数谱分解完全没学过啊。。再答:
第一,实对称矩阵是可以正交相似对角化的.即A实对称则存在正交矩阵P,使得:P转置AP=对角阵(对角线上元素正好是n个特征值).这样的话就可以先不管A,我们先只看他的相似对角型,即只考虑对角阵,对角阵记
可以的,不过如果考试的话最好把合同为什么正定也写一下,反正也不难再问:但是一般情况下看到书上的合同都是好比CTAC=E则A与E合同,我这里是A=CTEC也就是E与A合同,这样不知道有没有问题再答:一样
因为P可逆所以以任一n维非零向量x,Px≠0所以(Px)^T(Px)>0所以f=x^T(P^TP)x=(Px)^T(Px)>0所以f是正定二次型.
应该是二次型f(x1,x2,…xn)=xT(ATA)x的规范型吧此时规范型是y_1^2+y_2^2+.y_r^2再问:����再答:ATA是半正定矩阵,并且秩为r所以正惯性指数为r,负惯性指数为0==
(1)A=11010-10-11(2)|A-λE|=1-λ101-λ-10-11-λc1+c31-λ100-λ-11-λ-11-λr3-r11-λ100-λ-10-21-λ=(1-λ)[-λ(1-λ)
充分性:二次型f=X^TAX与二次型g=Y^TBY具有相同的秩与正惯性指数→矩阵A与矩阵B合同因为矩阵A为n阶实对称矩阵所以存在正交矩阵P,使得P^TAP=Λ1(其中Λ1为对角元素只有±1与0的对角矩
因为A^2-2A=3E所以A的特征值a满足(a-3)(a+1)=0所以A的特征值只能是3或-1.又由于f的正惯性指数p=1所以A的特征值为3,-1,-1,-1所以规范型为(A).PS.事实上,由正惯性
210120002|A-λE|=2-λ1012-λ0002-λ=(2-λ)[(2-λ)^2-1]=(2-λ)(3-λ)(1-λ)所以A的特征值为1,2,3.
f=(x1+x2-2x3)^2+2x2^2+x3^2+4x2x3=(x1+x2-2x3)^2+2(x2+x3)^2-x3^2=y1^2+2y2^2-y3^2.Y=CX,其中变换矩阵C=100110-2
必要条件再问:能否简单解释一下呢再答:f正定,则其主子式都大于零
是A的每行的元素之和都是3这样的话A(1,1,1)^T=(3,3,3)^T=3(1,1,1)^所以3是A的特征值.再由r(A)=1所以A的特征值为3,0,0