求全体反对称矩阵构成数域F上的线性空间的维数和一个基
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 05:49:11
表示为:abcbdecef只有6个数字在变化,让一个数是1,其余为0,即可得到基,由6个矩阵组成.再问:一般的规律是什么?n(n+1)/2吗?再答:是的
证明:为便于书写,用A'表示A的转置矩阵:令B=(A+A')/2,C=(A-A')/2,则A=B+C其中B是对称矩阵(B'=B)C是反对称矩阵(C'=-C)证毕
由已知,A'=-A,B'=B所以有1.(AA)'=A'A'=(-A)(-A)=AA=A^2故.2.(AB-BA)'=(AB)'-(BA)'=B'A'-A'B'=-BA+AB=AB-BA.故.3.AB是
结论根本就是错的.只有1阶反对称阵肯定是幂零阵.反对称矩阵的特征值都是0或者纯虚数,只要有一个非零特征值及不会是幂零阵.举个2阶的反例01-10高阶的在后面继续补零.
数域上全体矩阵记为,全体可逆矩阵记为,全体行列式为1的矩阵记为.(1)证明依矩阵的加法和乘法构成环.(2)证明依矩阵的加法和乘法构成非交换环.(3)证明为的子环.2.掌握关系的矩阵表示及复合关系的矩阵
应该说这个标准型看上去不是很舒服,最好先把它转化到M=diag{D,D,...,D,0,0,...,0}其中D=01-10这步合同变换很容易,按1,n,2,n-1,3,n-2,...的次序重排行列即可
很简单,维数为4基,就这么取(打出来肯定提交不了,太多数字)2阶矩阵不是有4个元素吗?一个元素取1,其他元素取0.这样的2阶矩阵有4个,这就是他的基类似的你可以定义m*n矩阵的维数为mn,基的定义差不
你只要会用结式进行消元就行了.加法和乘法的封闭用结式来证明,求逆封闭可以直接把方程的系数反一下.
一个基是diag(1,0,...,0),diag(0,1,0,...0),.,diag(0,0,0,...,1)维数为n
全体可逆矩阵是否构成实数域上的线性空间?不是.因为逆对矩阵的加法不封闭,即可逆矩阵的和不一定是可逆矩阵.全体N阶矩阵可构成实数域上的线性空间.记εij为第i行第j列元素为1,其余都是0的n阶矩阵则εi
晕,这个就是书上的课后题啊,很简单的,认真一点一下就可以解出来了.不要懒啦.
由于反对称矩阵满足aij=-aji,主对角线上元素全是0所以主对角线以下元素由主对角线以上元素唯一确定所以维数为n-1+n-2+...+2+1=n(n-1)/2.
abcbdecef这是对称的0bc-b0e-c-e0这是反对称(反对称,对角线上元素一定为0)abc0de00f这是上三角.a,b,c,d,e,f取实数就好了,上述就是3阶的一般表示形式.
2维.主对角线上的元素为0.E_12,E_21为这个线性空间的一组基.
应该是(1x2)可以有两种解释:一是从数系理论理解,过于专业,我就不说了.二是简易的理因为复平面是二维的做如下对应关系(a,b)->a+bi其中加减和数乘运算同一般的向量运算,约定乘法如下(a,b)*
反对称矩阵主对角线上元全是0,aji=-aij所以反对称矩阵由其上三角部分唯一确定,故其维数为:(n-1)+(n-2)+...+1=n(n-1)/2令Eij为aij=1,aji=-1,其余元素为0的矩
反对称矩阵主对角线上元全是0,aji=-aij所以反对称矩阵由其上三角部分唯一确定,故其维数为:(n-1)+(n-2)+...+1=n(n-1)/2令Eij为aij=1,aji=-1,其余元素为0的矩
证明:若AB为反对称矩阵,则(AB)T=-AB=(-1)AB,已知A为n阶对称矩阵,则A=AT,B是n阶反对称矩阵,则BT=-B,而根据转置矩阵的重要性质(AB)T=BTAT=-BA=(-1)BA,(