求全微分 Z等于根号x y

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 06:46:22
求全微分 Z等于根号x y
z=f(x,y)是方程e^(-xy)-2z+e^z给出的函数,求全微分dz

e^(-xy)-2z+e^z=0-ye^(-xy)-2z'(x)+e^zz'(x)=0z'(x)=ye^(-xy)/(e^z-2)-xe^(-xy)-2z'(y)+e^zz'(y)=0z'(y)=xe

z= xy ln(xy) 求全微分dz

dz=d(xyln(xy))=xyd(ln(xy))+ln(xy)d(xy)=xyd(xy)/(xy)+ln(xy)d(xy)=d(xy)+ln(xy)d(xy)=(1+ln(xy))d(xy)=(1

设由方程x^2+y^2+z^2+4z=0确定隐函数z=z(x,y),求全微分dz

x^2+y^2+z^2+4z=02xdx+2ydy+2zdz+4dz=0(2z+4)dz-2xdx-2ydydz=(-2xdx-2ydy)/(2z+4)

设Z=Z(X,Y)是由方程Z*Z-2XYZ=1确定的隐函数,求全微分dz

设F(x,y,z)=z^2-2xyz-1则Fx=-2yz,Fy=-2xz,Fz=2z-2xyαz/αx=-Fx/Fz=-(-2yz)/(2z-2xy)=yz/(z-xy)αz/αy=-Fy/Fz=xz

函数z=x的平方+2xy平方+4y的三次方的全微分dz等于多少

解;z(x)=2x+2y²z(y)=4xy+12y²dz=(2x+2y²)dx+(4xy+12y²)dy

设方程e^z=xyz确定z为x,y的隐函数,求全微分dz(写出详细步骤,

Zxe^z=YZ+XYZx,Zx=YZ/(e^z-XY)Zy=XZ/(e^z-XY)dZ=Zxdx+Zydy=(ydx+xdy)Z/(e^z-xy)再问:设F(x,y,z)=e^z-xyzə

高数 求全微分z=根号(1-x^2-y^2)

偏z/偏x=1/2根号(1-x^2-y^2)×(-2x)偏z/偏y=1/2根号(1-x^2-y^2)×(-2y)所以dz=[1/2根号(1-x^2-y^2)×(-2x)]dx+[1/2根号(1-x^2

求全微分(x^2-2yz)dx+(y^2-2xz)dy+(z^2-2xy)dz的原函数

是∫(x^2-2yz)dx+∫(y^2-2xz)dy+∫(z^2-2xy)dz=x³/3+y³/3+z³/3-2xyz+C=(x³+y³+z³

z=x/根号下x^2+y^2,求全微分

zx=[√(x²+y²)-x²/√(x²+y²)]/(x²+y²)=y²/(x²+y²)^(3/2)

数学达人来帮忙!Z=3/根号下x^2+y^2 求全微分

dz/dx=-3/2*(x^2+y^2)^(-3/2)*2x=-3x*(x^2+y^2)^(-3/2)dz/(dxdy)=-3x*(-3/2)*(x^2+y^2)^(-5/2)*2y=9xy*(x^2

设函数z=x/y,求全微分dz|(2,1)

zx=1/y,代入y=1得zx=1zy=-(x/y^2)代入x=2,y=1得zy=-2所以dz=dx-2dy

设函数z=xy-y/x,求全微分dz=

dz=(y+y/(X^2))dx+(x-1/x)dy,

设函数z=x/y.求全微分 dz|(2,1)

dz/dx=1/y,在(2,1)的值是1dz/dy=-x/y^2,在(2,1)的值是-2所以dz|(2,1)=dx-2dy

设函数z=arctanx/y,求全微分dz

zx=1/(1+(x/y)²)*1/y=y/(x²+y²)zy=1/(1+(x/y)²)*(-x/y²)=-x/(x²+y²)所以

设函数z=xyln(xy),求全微分dz

dz=[yIn(xy)+y]dx+[xIn(xy)+x]dy分开求导

求函数Z=arctanx除以y+ln根号下X平方加Y平方,求全微分

z=arctanx/y+ln√(x^2+y^2)编微分的符号打不出来,只有用d代替了dz/dx=1/(1+(x/y)^2)*1/y+1/√(x^2+y^2)*1/2√(x^2+y^2)*2x=y/(x

22.已知二元隐函数z=z(x,y)由方程z^2+yz=1-xsiny确定,求全微分dz

2zdz+zdy+ydz=-sinydx-xcosydydz=[-sinydx-(xcosy+z)dy]/(2z+y)再问:不是先等式两边同时对x求偏微分再对y求偏微分吗?再答:偏微分和全微分的概念不

设函数z=z(x,y)是由方程z+ez=xy所确定的隐函数,求全微分dz.

对左右两边求导:(1+ez)dz=ydx+xdy.dz=1/(1+ez).(ydx+xdy).

实数x,y,z满足x=y+根号2,2xy+2*根号2*z*z+1=0,则x+y+z等于多少

把x=y+根号2代入得2y^2+2根号2y+2根号2*z^2+1=02[y+(根号2)/2]^2+2根号2*Z^2=0∴y+(根号2)/2=02根号2*z^2=0∴y=-(根号2)/2z=0x=(根号