求函数f(t)=sintcost的傅式
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 16:57:07
原函数为y=(x-2)2的二次函数,对称轴为x=2,讨论定义域和对称轴之间的关系,望楼主思考一下!
∫[e^(-2-s)t]dt=[1/(-2-s)]*∫[e^(-2-s)t]d(-2-s)=1/(s+2)
f(x)=x^2+4x+3对称轴是x=-2函数g(t)表示函数f(x)在区间[t,t+1]的最小值下面分类讨论:(1)若t+1<-2,即t<-3则g(t)=f(t+1)=(t+1)^2+4(t+1)+
f'(x)=lnx+x(1/x)=lnx+1令f'(x)=0lnx+1=0x=1/ex0,函数单调递增.(1)0
直接分离变量:df(t)/f(t)=-kdt积分:ln|f(t)|=-kt+C1得f(t)=Ce^(-kt)再问:�����df(t)/dt=k1-k2f(t)�أ�K1��K2Ϊ������ָ�㡣再
根据定义f'(1)=lim[f(1+t)-f(t)]/t,但是题目中所求式中分母是t,但分子两项相差3t,所以若想与f'(1)建立联系,只需在分子上乘3,但此时我们人为地将所求缩小为了原来的1/3,所
2-t>0t-1≥0解得,1≤t<2所以,定义域为D=[1,2)
f(x)=-1/2X^2-t*lnx+(t+1)x(x>0)f'(x)=-x-t/x+t+1>0同时*x(因为x>0)x^2-(1+t)x+t
就是它自身呀F(t)=sint.
设1-t=x,xf(x)可以根据频域微分性-jtf(t)对应dF(w)/dw,那么t*f(t)----j*dF(w)/dw,再根据尺度变换f(at)---1/[a]*F(w/a);此时a取-1;所以-
将函数求导得:f'(x)=2tx+2t^2最小值时,f'(x)=0,所以解得x=-t,将x=-t代入函数,可求出值
f(2+t)=f(2-t)则f(x)关于x=2对称可设f(x)=a(x-2)²+c又f(1)=0,f(0)=1则f(1)=a+c=0f(0)=4a+c=1解得a=1/3,c=-1/3则f(x
lim是什么意思
f(x)=x²-4x-4=(x-2)²-8对称轴是x=2①t+1
当T>=0时[T,T+2]为正值区间F(X+T)>=2F(X)=>(X+T)^2>=2X^2(X-T)^2-2T^2=√2当T
求导得方法做:∵f(x)=-2t³﹢12t∴f′(x)=-6t²+12∵f(x)=-2t³﹢12t∴f′(x)=-6t²+12>0在(1
f(1+t)=-f(1-t)f(1+0)=-f(1-0)f(1)=0a=-1f(x)=(x-1)^3f(2)+f(-2)=1-27=-26
根据题意,列出一个微分方程:ds(t)-----=C-s(t)dtds(t)-----=dt(此处C≠s(t))C-s(t)□ds(t)∫-----=∫dt(“□”起空格作用,无意义)□C-s(t)-
不知道你所说的傅氏变换是否就是Fourier变换,如是,则此题出的很有问题啊.Fourier变换的前提:函数必须在(-∞,+∞)上有定义,且在此区域上绝对可积,而正弦、余统函数均不满足第2个条件.在F
是不是一次函数啊?如果是一次函数,那么设通式为y=ax+b即f(x)=ax+b题中已知3f(t+1)-2f(t-1)=2t+17将通式代入即得3[a(t+1)+b]-2[a(t-1)+b]=2t+17