求函数f(x)=1 x按(x 1)的幂展开的带有拉格朗日余型的的n级泰勒公式

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 16:15:14
求函数f(x)=1 x按(x 1)的幂展开的带有拉格朗日余型的的n级泰勒公式
已知正实数X1,X2 及函数f(X)满足4的x次=1+f(X)/1-f(X).且f(X1)+f(X2)=1 求f(x1+

根据第一个条件可以求得f(x)=(4^x-1)/(4^x+1)(4^x表示4的x次方)代入第二个条件,f(x1)+f(x2)=1,整理出来一个包含(4^x1+4^x2)和4^(x1+x2)的一个等式.

函数可导性f(x)= { x+1 (x1)

/>在x=0处,左极限=1,右极限=-1左极限≠右极限所以在x=0处不连续所以在x=0处不可导谢谢

已知正实数X1、X2 及函数f(x),满足4^x=(1+f(x))/(1-f(x) ),且f(x1)+f(x2)=1,则

解出f(x)=[4^x-1/4^x+1]求导的其导数=1+{2*4^x*(以4为底e的对数)/(4^x+1)^2}恒大于零则其在R上递增f[x1]+f[x2]=1可化简为4^(x1+x2)=3+(4^

函数f(x)=-(x-1)^2(x=1)满足对任意x1不等于x2,都有(f(x1)-f(x2))/x1-x2>0,求a取

条件即为当x1>x2时,f(x1)>f(x2)此为增函数,当x=1,需有f(1)=3+3a>=0-->a>=-1(3-a)x+4a为增函数需有:3-a>0-->a

已知f(x1+x2)=f(x1)+f(x2)+1在R上成立,求f(x)是奇偶函数或f(x)+1是奇偶函数

当x2=0时f(x1)=f(x1)+f(0)+1f(0)=-1当x1=-x2时f(0)=f(-x2)+f(x2)+1-f(-x2)-1=f(x2)+1所以f(x)+1是奇函数

已知函数f(x)=1-2x,x1

inputx,yifx1,theny=1+2xprinty

已知定义在(0,+∞)上的函数f(x1/x2)=f(x1)-f(x2),仅当x>1时,f(x)<0,(1)求

1)令y=-x则f(x)+f(-x)=f(0)令x=y=0则f(0)+f(0)=f(0)所以f(0)=0即f(x)+f(-x)=0所以f(x)是奇函数2)设x1>x2则x1-x2>0则f(

设函数f(x)=x^2,x1 在x=1处可导,求a,b值

可导则连续f(1)=1^2=1则x趋于1+,ax+b极限是1所以a+b=1可导则左右导数xian相等(x^2)'=2x所以左导数=2(ax+b)'=a则右导数=a=2所以a=2,b=1-a=-1

已知正实数X1,X2及函数f(x)满足4^x=(1+f(x))/(1-f(x)),且f(X1)+f(X2)=1,求f(X

因为4^x=(1+f(x))/(1-f(x)),所以f(x)=(4^x-1)/(4^x+1)且(4^x1-1)/(4^x1+1)+(4^x2-1)/(4^x2+1)=1所以:2(4^(x1+x2)-1

一道数学函数题.已知函数f(x)=-1/2X^2-t*lnx+(t+1)x1.求函数F(X)单调区间2.若t

f(x)=-1/2X^2-t*lnx+(t+1)x(x>0)f'(x)=-x-t/x+t+1>0同时*x(因为x>0)x^2-(1+t)x+t

已知函数f(x)=a+x x1在x=1处连续,试求a的值

f(x)=a+xx1在x=1处连续左极限x→1-Limf(x)=a+1右极限x→1+Limf(x)=0在x=1处的值f(x=1)=a+1以上三者相等:a=-1

已知函数f(x)=2^x,x1,x2是任意实数,且x1≠x2.证明1/2[f(x1)+f(x2)]>f[(x1+x2)/

不等式左边=[2^x1+2^x2]/2>2根号(2^x1*2^x2)/2=根号2^(x1+x2){因为x1不等于x2,所以等号取不到}不等式右边=2^[(x1+x2)/2]=根号2^(x1+x2)得证

分段函数f(x)=2^1-x x1 ,则满足f(x)

log2x是表示以2为底得对数?当x

设X的概率密度为f(x)={1x1,-1小于等于X小于等于1 0,其他 求 X的分布函数F(X);

F(x)=0,x再问:还是这道题第二问P{x<0.5}P{X>-0.5}再答:p{x-0.5}=1-F(-0.5)=1-[-(-0.5)^2/2+1/2]=5/8再问:能不能告诉我你的电话我7号要考试

分段函数f(x)=[2^(1-x)(x1)] 则满足f(x)

再问:就是分段求出再取并集是吗?可以用图像法吗?再答:不行,图像法是宏观的,数学是要精确的,对于这类题目如过为大题目用数学计算如果是小题目,那么请问你如何事先知道哪些是关键点,然后把它在图像上表示出来

设函数f(x)=e^x/x^2+k,k>0,1求f(x)的单调性 2,设函数f(x)有两个极值点x1,x2,x1

1、f'(x)=[e^x*(x^2+k)-e^x*2x]/(x^2+k)^2=e^x*(x^2-2x+k)/(x^2+k)^2当k≥1时,x^2-2x+k=(x-1)^2+(k-1)≥0,故f(x)在

已知函数f(x)=ln(1/x)-ax^2+x若函数是单调函数求a的范围若有两个级值证明f(x1)

f(x)=ln1/x-ax2+x(a>0)的定义域是x>0.f'(x)=-1/x-2ax+1=(-2ax^2+x-1)/x=[-2a(x-1/4a)^2+1/8a-1]/x当a>=1/8,即1/8a-

已知正实数x1,x2及函数f[x]满足4^x=1+f[x]/1-f[x],且f[x1]+f[x2]=1.求f[x1+x2

解出f(x)=[4^x-1/4^x+1]求导的其导数=1+{2*4^x*(以4为底e的对数)/(4^x+1)^2}恒大于零则其在R上递增f[x1]+f[x2]=1可化简为4^(x1+x2)=3+(4^

求极值的已知正实数X1,X2,及函数f(x)满足 4^x = (1+f(x)) / (1-f(x)) ,且 f(x1)

由4^x=(1+f(x))/(1-f(x))可得f(x)=[4^x-1]/[4^x+1],再由f(x1)+f(x2)=1,带入化简得:4^(x1+x2)-3=4^x1+4^x2,此时利用基本不等式a^

函数f(x)=1-|x+1|,对于区间A上的任意X1X2,不等式(x1-x2)[f(x1)-f(x2)]>0恒成立,求区

∵对于区间A上的任意x1,x2,不等式(x1-x2)[f(x1)-f(x2)]>0恒成立∴x1≠x2,[f(x1)-f(x2)]/(x1-x2)>0∴f(x1)-f(x2)和x1-x2的符号相同∴函数