求函数u=y x z x-x z的偏导数
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 06:13:33
再问:能不能解释下过程?用的是什么方法?再答:
先对x求偏导u'x=f'(x,xy,xyz)+yf'(x,xy,xyz)+yzf'(x,xy,xyz)所以u'xy=yf''(x,xy,xyz)+xzf''(x,xy,xyz)+f''(x,xy,xy
两边同时微分zdx+xdz+zdy+ydz+xdy+ydx=0(x+y)dz+(y+z)dx+(z+x)dy=0dz=-[(y+z)dx+(z+x)dy]/(x+y)
由于偏导符号不好打,以下略述我的思路和解法.首先认清题目已知的是f,g,z的函数形式,所以结果应该是它们的偏导的组合.有g(y,z,t),h(z,t)恒等于0,可以把z,t看成只是y的函数,即z=z(
Z'x=-yf'(y/x)y/x^2xZ'=-y^2f'(y/x)/xZ'y=xf'(y/x)1/xyZ'y=yf'(y/x)xZ'x+yZ'y=-y^2f'(y/x)/x+yf'(y/x)=y(x-
方程两边对x求偏导:yz+xyəz/əx=(z+xəz/əx)e^xz得:əz/əx=(ze^xz-yz)/(xy-xe^xz)方程两边对y
f对第1个变量的偏导函数记作f1,第2个变量的偏导函数记作f2,dz=f1*d(xz)+f2*d(z/y)...[注:写完整的话是f1(xz,z/y),f2也如此]=f1*(xdz+zdx)+f2*(
这实际上是隐函数组求偏导数的问题,具体过程见图片.
df=f1*d(xz)+f2*d(y+z)=f1*(z*dx+x*dz)+f2*(dy+dz)=0dz=-(z*f1*dx+f2*dy)/(x*f1+f2)其中f1和f2分别为f这个二元函数对第一个和
∂u/∂x=[∂u/∂(xy)][d(xy)/dx]+[∂u/∂(x/y)][d(x/y)/dx]=yf₁'+(1/
错了,偏导数公式里面分子分母是一个整体,不能拆分,这和微分求导数不一样,微分可以拆分的
再问:这么简单?再答:是啊!再问:好吧。。。︶︿︶你是老师还是学生?再答:老师再问:。。。。。。希望您没带过我的高数再答:呵呵,我高中老师,大学的时候学习这个
这是隐函数.二阶导再导一次就是.方程两边对x求导,得z'=cos(xz)(xz)'+y(y不是关于x的函数吧?)=zcos(xz)+xz'cos(xz)+y所以z'=[zcos(xz)+y]/[1-x
2X^2+2Y^2+Z^2+8XZ+8=0上式关于x求偏导:4x+2z*z'(关于x的偏导)+8z+8xz‘(关于x的偏导)=0可得出z’(关于x的偏导),二阶导类似这样进行.
两边对x求导先求出Z‘,然后再两边对x求导,这次得到z’和x,y,z表示的z“