求函数y=3sin(2x pai 4),x [0,pai]的单调递减区间
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 04:09:16
函数的周期T=2πω=2π2=π,由-π2+2kπ≤2x+π3≤π2+2kπ,解得−5π12+kπ≤x≤π12+kπ,即函数的递增区间为[−5π12+kπ,π12+kπ],k∈Z,由2x+π3=π2+
∵y=sin(2x+π3),∴由2kπ−π2≤2x+π3≤2kπ+π2,k∈Z.得kπ-5π12≤x≤kπ+π12,k∈Z.∴当k=0时,递增区间为[0,π12],当k=1时,递增区间为[7π12,π
y=(cosx+2)/(sinx-1)ysinx-y=cosx+2ysinx-cosx=y+2√(y²+1)sin(x-t)=y+2,t=arctan(1/y)sin(x-t)=(y+2)/
y=sin^2x+√3sin^2xcosx+2cos^2x你确定那边+√3sin^2xcosx如果是+√3sinxcosx那么y=sin^2x+√3sinxcosx+2cos^2x=1/2(2cos^
把两个三角函数展开,得y=3/2sinx-√3/2cosx合并成:y=√3sin(x-π/6)单调区间是(-π/3,2π/3)增(2π/3,5π/3)减其中都要加上2kπ,我就不写了
∵(π3+4x)+(π6-4x)=π2,∴cos(4x-π6)=cos(π6-4x)=sin(π3+4x),∴原式就是y=2sin(4x+π3),这个函数的最小正周期为2π4,即T=π2.当-π2+2
由化简sinx+cosx前分别乘以根号2*sin45.根号2*cos45.,得解根号2sinxy=sinx的平方+根好2*sinx+2令t=sinx-1=
y=sin³x-sin3x→y'=3sinx·(sinx)'-cos3x·(3x)'→y'=3sin²xcosx-3cosx→y'=3(1-cos²x)cosx-3cos
y=sin^2x+sinx=(sin^2x+sinx+1/4)-1/4=(sinx+1/2)^2-1/4sinx=-1/2时有最小值-1/4sinx=1时有最大值2
要搞清楚变换的过程,从sinx到sin(2x)周期变为原来的1/2,再到sin(2x+pi/6),即为sin(2(x+pi/12)),是向左平移了pi/12个单位长度.所以[-pi/6,pi/6]上式
2*cos(x^2)*x/sin(x)^2-2*sin(x^2)*cos(x)/sin(x)^3
y=sin(x+π/3)sin(x+π/2)=sin(x+π/3)cosx=(sinxcosπ/3+cosxsinπ/3)cosx=1/2sinxcosx+√3/2cos^2(x)[cos^2(x)指
[3/2,13/4]
sinx的减区间是(2kπ+π/2,2kπ+3π/2)所以这里2kπ+π/2
答:因为:(sinx)'=cosxy=-(sinx)^2y'(x)=-2sinx*(sinx)'y'(x)=-2sinxcosxy'(x)=-sin(2x)
/>y=3sinχcosχ-4cos²χ+2(1-cos²χ)=1.5sin2x-6cos²χ+2=1.5sin2x-3(1+cos2x)+2=1.5(sin2x-2co
原式=2-3/(1+sinα)1+sinα的范围是[0,2]所以-3/(1+sinα)的范围是[-oo,-3/2]原式值域为[-oo,1/2]
原式y=sinx^2+2xdy/dx=2x·cosx^2+2
解1当2kπ-π/2≤2x+π/3≤2kπ+π/2,k属于Z时,y是增函数即2kπ-5π/6≤2x≤2kπ+π/6,k属于Z时,y是增函数即kπ-5π/12≤x≤kπ+π/12,k属于Z时,y是增函数
y=sin(1/2x+π/3),x属于R当1/2x+π/3=2kπ+π/2时,y=sin(1/2x+π/3)有最大值1此时x=4kπ+π-2π/3=4kπ+π/3,k∈Z当1/2x+π/3∈【2kπ+