求函数z=In(x y)在抛物线y^2

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 17:03:39
求函数z=In(x y)在抛物线y^2
偏导数设二次函数Z=X^xy,求∂z/∂x,∂z/∂y.

第一个:z=x^xy=e^[ln(x^xy)]=e^(xylnx)令u=xy*lnx,则z=e^u∂z/∂x=(x^u)'•u'=(e^u)•(xyln

设函数Z=Z(X,Y) 由方程XY=e^z-z所确定的隐函数,求a^2z/axay

e^y-e^x=xy两边求导,得e^y*y'-e^x=y+xy'(e^y-x)y'=(e^x+y)所以y'=(e^x+y)/(e^y-x)x=0时,e^y-e^0=0,则e^y=1,则y=0所以y'(

求函数Z=x^xy的偏导数

Z=f'x(x,y)=xy*[x^(xy-1)]*yZ=f'y(x,y)=xy*[x^(xy-1)]*x再问:答案是Z=f'x(x,y)=yx^xy(lnx+1),Z=f'y(x,y)=x^(xy+1

求函数z=xy(a-x-y)的极值

首先z'(x)=x*(a-x-2*y)=0z'(y)=y(a-y-2*x)=0计算得到四组解(0,0)(a,0)(0,a)(a/3,a/3)1.(0,0)时,f''xx=0,f''xy=a,f''yy

求函数z=xy在x^2+y^2=1上的最大值和最小值

解由x^2+y^2≤1设x=ksina,y=kcosa故k^2sin^2a+k^2cos^2a≤1即k^2≤1即-1≤k≤1则z=xy=ksinakcosa=k^21/2×2sinacosa=1/2k

求函数z=sin(xy)二阶偏导数

一阶dz/dx=ycosxydz/dy=xcosxy二阶d^2z/dx^2=y^2cosxyd^2z/dy^2=x^2cosxy还有混合导数相等就写一个了=cosxy-xcosy

求函数z=xy+x/y的偏导数

z=xy+x/y对x的偏导数=y+1/y对y的偏导数=x-x/y^2

求二元函数Z=e^xy在点(1,2)处的全微分

Z=e^xy在x处的导函数为ye^(xy)在y处的导函数为xe^(xy)dz=ye^(xy)dx+xe^(xy)dy=2e^2dx+e^2dy

设函数z=z(x,y)由方程e^(-xy)-2z+e^z=0确定,求z/x,z/y

两端对x求偏导得:-ye^(-xy)-2(z/x)+(z/x)e^z=0,所以,z/x=ye^(-xy)/(e^z-2)两端对y求偏导得:-xe^(-xy)-2(z/y)+(z/y)e^z=0,所以,

求z=In(x²+y²)在点(0,-1)处的全微分 求函数z=sin(xy)+cos²(x

...偏z/偏x=-8切线(x-8)/8=(y+8)/1=(z-8)/8,法平面:x+z-8=1(8):应该是抛物线y^8=8x吧抛物线在(8,8...函数z=In(x+y)沿着这抛物现在该点处偏向x

怎样求函数Z=xy在条件x+y=1下的极大值呀?

x+y=1=>y=1-xz=xy=x(1-x)=x-x^2对x求导z'=1-2x令z'=0=>1-2x=0=>x=0.5所以,x=y=0.5时z有是大值0.25再问:嗯。thankyou

求函数z=xy在约束条件x+y=1下的极大值

z=xy=x(1-x)=-x^2+x=-(x-1/2)^2+1/4,z最大为1/4也可以用求导的方法:对z=-x^2+x求导并令其等于0得:-2x+1=0,x=1/2时,z去极大值并是最大值1/4

z=sin(xy)+cos(的平方)(xy) 求函数的偏导数,

Zx=ycos(xy)-2ycos(xy)sin(xy)=ycos(xy)-ysin(2xy)Zy=xcos(xy)-xsin(2xy)

求下列函数在指定范围内的最大值和最小值 z=xy,x^2+y^2≤4

解由x^2+y^2≤4设x=ksina,y=kcosa故k^2sin^2a+k^2cos^2a≤4即k^2≤4即-2≤k≤2则z=xy=ksinakcosa=k^2*1/2×2sinacosa=1/2

求下列函数的全微分z=(In(x^2+y^2))^xy

两边即对数得:lnz=xy*ln(lnu),不妨记u=x^2+y^2z'x/z=yln(lnu)+2x^2y/lnu,z'x=z[yln(lnu)+2x^2y/lnu]z'y/z=xln(lnu)+2

求函数的偏导数 z=arcsin(xy)

令u=xy,则z对x的偏导就变为(dz/du)*(偏u/偏x),然后按这样的顺序算就行了,同理,对y也一样,不知道这样说你明不明白

求函数z=xy+sinx的偏导数

z=y+cosx+x再问:偏导数,不是导数再答:这不就是偏导数吗再问:哦,有全过程吗,谢谢再答:ðz/ðx=y+cosxðz/ðy=x

求函数Z=XY在点(2,1)处的全微分dz

再问:就是这个吗?再答:是的。如还有不懂请追问,懂了请采纳。再问:还有这三题