求和值Sn=a aa aaa -- aaaa-aa(n位)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 00:37:20
查收!再答:正在上传中再答:再答:
.Sn=1/a+2/a^2+3/a^3+...+n/a^n,①(1/a)Sn=1/a^2+2/a^3+...+(n-1)/a^n+n/a^(n+1),②①-②,(1-1/a)Sn=1/a+1/a^2+
注意等式:Sn=1+2x+3x^2+...+nx^(n-1)和xSn=x+2x^2+3x^3+...+nx^nSn-xSn=1+x+x^2+x^3+...+x^(n-1)-nx^nx=1求和很简单,x
Sn=(a1+an)n/2Sn=na1+n(n-1)d/2=n[2a1+(n-1)d]/2=na1+n²d/2-nd/2=n²d/2+n(a1-d/2)Sn=An²+Bn
#includeintmain(){inti;intn,a,s,temp;scanf("%d%d",&n,&a);s=a;temp=a;for(i=2;i
stringgeta(intn){stringres="";for(inti=0;i
∵1+12+14+…+(12)n-1=1−(12)n1−12=2−12n−1,∴Sn=2n−(1+12+122+…+12n−1)=2n-1−12n1−12=2n-2+12n−1.
首先通过一项,比如aaaaa=a*(11111)=a*(1+10+100+1000+10000)=a*(10^0+10^1+10^2+10^3+10^4)来确定数列的通项an=a*(10^0+10^1
an=n(n+1)=n^2+nSn=(1^2+2^2+...+n^2)+(1+2+...+n)=n(n+1)(2n+1)/6+n(n+1)/2=n(n+1)/6*[2n+1+3]=n(n+1)(n+2
Sn=(a-1)+(a^2-3)+(a^3-5)+...+(a^n-(2n-1))=(a^1+a^2+a^3+..+a^n)-(1+3+5+...+(2n-1))Q=a^0+a^1+a^2+a^3+.
Sn=(a+a^2+a^3+...+a^n)-(1+2+3+..+n)其中,1+2+3+..+n=n(n+1)/2a+a^2+a^3+...+a^n=na(a=1)a+a^2+a^3+...+a^n=
就是乘公比错位相减.最终化成Sn=(1-1/(a^n))*1/(a-1).我认真的算过了,希望楼主可以采纳哦再问:给你加悬赏了把化简步骤发一下谢谢再问:能不能发下化简步骤
首先,分子分母同时乘以-1是没问题的.你所给出的等比数列:可设An=A/(1+r)^n公比q=1/(1+r);首项A1=A/(1+r)Sn=a1(1-q^n)/(1-q)=A/(1+r)*[1-(1/
(1)a=0,sn=1(2)a=1,sn=1+2+3+...+n=n(1+n)/2(3)a≠0,a≠1sn=1+2a+3a^2+…+na^(n-1),asn=a+2a^2+3a^3+..+(n-1)a
Sn=(a-1)+(a^2-3)+(a^3-5)+…+[a^n-(2n-1)]=(a+a^2+a^3+...+a^n)-[1+3+5+...+(2n-1)]=a(1-a^n)/(1-a)-(1+2n-
系数等差字母等比常见模型S=1+2a+3a^2+…+na^n-1①同时乘以公比aS=a+2a^2+…+(n-1)a^n-1+na^n②①-②得(1-a)S=1+a+a^2+…+a^n-1-na^n然后
Sn=1/a+2/a^2+3/a^3+…+n/a^naSn=1/a^2+2/a^3+...+n-1/a^n+n/a^n+1Sn-aSn=1/a+1/a^2+1/a^3+...+1/a^n-n/a^n+
Sn*(1-a)=(1-a)+(1-a^2)+(1-a^3)+.+(1-a^(n+1))Sn*(1-a)=(n+1)-(a+a^2+...+a^(n+1))之后就不用教了吧关键是第一步,两边同时乘以(
aSn=a^2+3a^3+5a^4+...+(2n-3)a^n+(2n-1)a^(n+1)①Sn=a+3a^2+5a^3+.(2n-1)a^n②②-①得:(1-a)Sn=a+2a^2+2a^3+2a^
#include"stdio.h"longf1(longa,longn){if(n==1)returna;elsereturn(10*f1(a,n-1)+a);}longf2(intn){longr=