f(1-x)=f(3-x)且f(x)=2x有等根

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 09:13:31
f(1-x)=f(3-x)且f(x)=2x有等根
一次函数F(X)满足f(f(x))=4x且f(1)小于0.则f(x)等于

设f(x)=ax+b(a≠0)∵f(f(x))=4x∴f(ax+b)=4x∴a(ax+b)+b=4x∴a²x+ab+b=4x∴a²=4ab+b=0∴a=±2b=0∵f(1)=a+

设函数f(x)=x^3+bx^2+cx+d,已知F(x)=f(x)-f'(x)是奇函数,且F(1)=-11

1.f(x)=x^3+bx^2+cx+d所以f‘(x)=3x^2+2bx+c所以F(x)=f(x)-f'(x)=x^3+(b-3)x^2+(c-2b)x+c-d因为F(x)是奇函数所以F(x)=-F(

函数 f(x)满足f(1)=1,且f(x)的导数f'(x)

楼主,设g(x)=2F(X)-X-1所以g(1)=0g‘(x)=2F'(X)-1

f(x+y)=f(x)·f(y),且f(1)=2,求f(2)/f(1)+f(3)/f(2)+...+f(2010)/f(

f(x+y)=f(x)·f(y),且f(1)=2,推出f(2)=f(1)*f(1)=2^2f(3)=2^3,.,f(n)=2^nf(2)/f(1)+f(3)/f(2)+...+f(2010)/f(20

偶函数f(x)满足f(x+3)+f(x)=1 且x属于(0,1)时 f(x)=2x 求f(35/2)

因为f(x+3)+f(x)=1,取x+3=y,有f(y)+f(y-3)=1又函数的值与自变量形式无关,故f(x+3)+f(x)=1=f(x)+f(x-3)即f(x+3)=f(x-3),也即f(x)=f

y=f(x)是R上的奇函数,且f(x+2)=f(x),则f(1)+f(2)+f(3)=

f(x)是R上的奇函数,所以f(0)=0,又f(x+2)=f(x),所以f(2)=f(0)=0由奇函数得f(-1)=-f(1)由周期性得f(-1)=f(1),从而f(-1)=f(1)=0所以f(3)=

函数f(x)满足f'(x)=f(x)+1,且f(0)=0,则f(x)=______

只有e^x的导数是它本身,所以可以设f(x)=k*e^x+b则f'(x)=k*e^x又因为f'(x)=f(x)+1,k*e^x=k*e^x+b+1所以b+1=0b=-1因为f(0)=0,将x=0b=-

设函数f(x)=ax^2+bx+c((a≠0),满足f(x+1)=f(-x-3),且f(-2)>f(2),解不等式f(-

大致画个图先因为f(x+1)=f(-x-3)所以f(1)=f(-3)所以f(x)对称轴为x=-1又因为f(-2)>f(2)因为-2比2距离对称轴更近显然a=-1-2x^2+2x-3=-(x-1/2)^

定义域在R上的奇函数f(x)满足 f(x-3)=f(x+2)且f(1)=2 求f(2011)-f(2010)

奇函数f(-x)=-f(x),x=0,则f(-0)=-f(0),f(0)=0.f(x-3)=f(x+2),设x-3=a,f(a)=f(a+5),函数周期是5.f(2011)-f(2010)=f(201

f(x)定义在R上,且f(x+2)[1-f(x)]=1+f(x),f(3)=(根号3)-2 求f(2007)

当f(x)不为0时,由题意可知:f(x+2)=[1+f(x)]/[1-f(x)],则f(x+4)=[1+f(x+2)]/[1-f(x+2)]={1+[1+f(x)]/[1-f(x)]}/{1-[1+f

如果函数f(x)的定义域为{x|x>0},且f(x)为增函数,f(xy)=f(x)+f(y)f(3)=1,且f(a)>f

f(xy)=f(x)+f(y)f(9)=f(3*3)=f(3)+f(3)=1+1=2所以由f(a)>f(a-1)+2可以看成是f(a)>f(a-1)+f(9)而f(a-1)+f(9)=f(9a-9)所

已知偶函数f(x)满足f(x+3)=f(x),且f(1)=-1,求f(5)+f(11)的值

f(11)=f(5)=f(-1)=f(1)=-1因为f(11)=f(5+3+3)=f(-1+3+3)

f(x+y)=f(x)f(y)且,x>0,f(x)属于(0,1)

无味令人口爽 :楼主:应该是集合A={(x,y)|f(x²)f(y²)>f(1)}吧?详情见如下图:

已知偶函数f(x)满足f(x+3)=f(x),且f(1)=-1.求f(5)+f(11)的值

f(5)=f(2+3)=f(2)f(11)=f(8+3)=f(8)=f(5+3)=f(5)=f(2+3)=f(2)f(5)+f(11)=f(2)+f(2)=2f(2)又因为f(x)是偶函数所以f(2)

已知偶函数f(x)满足f(x)=f(x+3),且f(1)=-1,则f(2)+f(5)的值为

已知f(x)=f(x+3),取x=-2f(-2)=f(1)=-1偶函数f(x),f(2)=f(-2)=-1取x=2f(2)=f(5)=-1f(2)+f(5)=-2

f(x)是奇函数,且可导,若f'(x+3)=f'(x) f'(x)=-1 f'(5)+f'(11)=

这种填空题最好办了.设y=-x,则满足题目条件,你说f'(5)+f'(11)等于几?再问:求详细的方法啊,要的不是答案。。。再答:我想跟你说这道题有问题。漏洞百出。再问:就是f’(11)=f'(8)=

数学函数f(x)=x²-bx+c,且f(1+x)=f(1-x),f(0)=3,则二次函数f(x)=?

f(0)=3,f(0)=0²-b*0+c=3c=3f(1+x)=f(1-x)(1+x)²-b(1+x)+c=(1-x)²-b(1-x)+c1+2x+x²-b-b

已知偶函数f(x)满足f(x+3)=f(x),且f(1)=-1,求f(5)+f(11)的值.

f(4)=f(1+3)=f(1)=-1x=1代入f(x+3)=f(x)下同f(2)=f(-1+3)=f(-1)=f(1)=-1因为函数是偶函数有f(-x)=f(x)f(5)=f(2+3)=f(2)=-

已知偶函数f(x)满足f(x+3)=f(x),且f(1)=-1,则f(5)+f(11)等于多少

偶函数有f(x)=f(-x)f(5)=f(2)=f(-1)=f(1)=-1f(11)=f(8)=f(5)=-1所以f(5)+f(11)=-2

已知f(x)=x²+c,且f[f(x)]=f(x²+1),F(x)=f[f(x)]+mf(x),是否

已知f(x)=x²+c,且f[f(x)]=f(x²+1)所以可得c=1F(x)=(x^2+1)^2+1+mx^2+m=x^4+(2+m)x^2+(1+m)此时看成一个一元二次函数即