求复数w=1 z除以1-z(z不等于1)的实部 虚部 模
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 06:57:02
设z=x+yi(x,y为实数)1=|z+1|^2-|z-i|^2=|(x+1)+yi|^2-|x+(y-1)i|^2=(x+1)^2+y^2-[x^2+(y-1)^2]=x^2+2x+1+y^2-(x
设z=a+bi因为3z+(z-2)i=2z-(1+z)i所以3(a+bi)+(a+bi-2)i=2(a+bi)-(1+a+bi)i3a+3bi+ai-b-2i=2a+2bi-i-ai+b(3a-b)+
设z=x+iy,由条件知道:√(x^2+y^2)+x-iy=1-2i故:√(x^2+y^2)+x=1-y=-2解得:x=-3/2,y=2即z=-3/2+2i
z=1+√3i 代数法如下图: 几何法:由复数的几何意义可知,z表示的点与点(-1,-√3)关于原点对称则,z表示的点为(1,√3)所以,z=1+√3i
再问:抱歉,题里面w是[z-(1+i)]除以[z+(1+i)]再答:说实话,你说的除的那个轨迹我不会算,你知道答案发给我看看,还行?
z=3+3i,或z=-2-2i.
z*z-3i*z=1+3i化简(z+1)(z-1-3i)=0所以z=-1或z=1+3i
依题,由复数z=x+yi(x,y∈R),满足│z│=1,得:x^2+y^2=1另外:│z-1-i│^2=(x-1)^2+(y-1)^2=-2(x+y)+3(注:将x^2+y^2=1带入)而:1/2=(
设z=a+bi,a,b是实数|z-2|^2=(a-2)^2+b^2=41/z=1/(a+bi)=(a-bi)/(a^2-b^2)z+1/z=[a+a/(a^2-b^2)]+[b-b/(a^2-b^2)
设z=a+bi.F(-z)=|1-z|+z=√[(1-a)²+(-b)²]+a+bi=10-3ib=-3.√[(1-a)²+3²]+a=10.解得:a=5.z=
设z=a+bi代入得a+bi-√(a^2+b^2)=-1+i比较两边得a-√(a^2+b^2)=-1b=1代入得a-√(a^2+1)=-1-√(a^2+1)=-1-a平方得a^2+1=a^2+2a+1
由条件|Z-6|+|Z-3i|=3×√5得z的终点在AB上(因为条件的意思是z的终点到6和到3i的距离之和为3根号5而AB=3根号5)又有w=z+1-iz和1-i分别是图中两个红箭头w就是绿箭头题目要
我教你这种求复数z你可以选择设z=a+bi|z|=√(a^2+b^2)————(你要理解这是实数!与虚部无关)共轭复数z'=a-bi所以|z|-z'=√(a^2+b^2)-a+bi=1-2i对应的实部
首先不好意思楼主的提问还是有问题,复数是不会考到绝对值问题的.所以应该您看到得是模的符号,即是w的模等于5√2.(学了复数应该知道模是什么和怎么计算,如果不知道翻下资料书就可以了,在下就不解释了)解题
设z=a+bi,a,b是实数则z拔=a-bi|z|即z的模,是实数所以左边的虚数是-b右边是2所以-b=2b=-2|z|=√(a²+b²)所以√(a²+4)+a+2i=1
a=1;z=1+iz+1/z=1+1/z=1+1/1-z=1+z/2+1=3/2+1/2z再问:可以明白一点不〜谢了!
设Z=a+bi,原式变为根号下a^2+b^2-a-bi=1-i实虚部各相等,所以b=1,a=0Z=i
|Z|=1+3i-Z|Z|+Z=1+3i因为lZl是实数所以设Z=x+3i所以√(x^2+3^2)+x=1即x^2+9=(1-x)^2得x=-4所以Z=-4+3i
(1)令z=a+bi,有w=z+1/z=a+bi+1/(a+bi)=(a^2+2abi-b^2+1)/(a+bi)=(a^2-b^2+1+2abi)/(a+bi)即a^2-b^2+1+2abi=w(a
由|z|=1设z=cosθ+isinθ(θ∈[0,2π)由z^5+z=1得cos5θ+cosθ+i(sin5θ+sinθ)=1于是cos5θ+cosθ=1,sin5θ+sinθ=0由sin5θ+sin