f(a h)-f(a-h) 2h等于

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 22:05:03
f(a h)-f(a-h) 2h等于
英语翻译香港地址翻译:MRS.GERALDINE AH-THION - FLAT H,21/F LA ROSSA A -

MRS. GERALDINE AH-THION 是一位女士的名字.不过后面的姓可能有笔误,也许是Anthon ? 这是位于大屿山距离香港国际机场还不到

设函数f(x)在x=a处可导,且lim[f(a+5h)]-f(a-5h)]/2h=1,则f'(a)=

那个极限式可以化为5/2(f'(a)+f'(a))=1,也即5f'(a)=1,f'(a)=1/5;

1.函数f(x)在x=a处可导 ,则lim h->a [f(a+3h)-f(a-h)]/2h=?

1.f(a+3h)-f(a-h)=f(a+3h)-f(a)+f(a)-f(a-h),limh→0[f(a+3h)-f(a)]/3h=f'(a),limh→0[f(a-h)-f(a)]/(-h)=f'(

函数f(x)在x=a处可导,则Lim h→a [f(a+3h)-f(a-h)]/2h=?

=liim{f(a+3h)--f(a)+f(a)--f(a--h)}/2h=lim3/2*[f(a+3h)--f(a)]/(3h)+lim1/2*[f(a--h)--f(a)/(--h)]=3/2*f

若函数f(x)在点x=a处可导,则lim(h→0)[f(a+4h)-f(a-2h)]/3h=?

把h趋于0写作h--0lim(h--0)[f(a+4h)-f(a-2h)]/3h=lim(h--0)[f(a+4h)-f(a)+f(a)-f(a-2h)]/3h=lim(h--0)(4/3)[f(a+

f(x)=x^2+4x ,求(f(a+h)-f(a))/h.此题答案是2a+h+4,

f(x)=x^2+4xf(a+h)=(a+h)^2+4a+4hf(a)=a^2+4af(a+h)-f(a)=a^2+2ah+h^2+4a+4h-a^2-4a=2ah+h^2+4h所以:(f(a+h)-

设f(x)在x=a处可导,f'(x)=b 求极限lim(h-0) f(a-h)-f(a+2h)/ h

lim[h→0][f(a-h)-f(a+2h)]/h=lim[h→0][f(a-h)-f(a)+f(a)-f(a+2h)]/h=lim[h→0][f(a-h)-f(a)]/h+lim[h→0][f(a

若f′(x0)=-2,则lim[f(x0+h)-f(x0-h)]/h=

lim(h->0){[f(x0+h)-f(x0-h)]/h}=lim(h->0){[f(x0+h)-f(x0)+f(x0)-f(x0-h)]/h}=lim(h->0){[f(x0+h)-f(x0)]/

SUMIF(INDIRECT(F$2&"!"&"$H:$H"),$A11,INDIRECT(F$2&"!"&"$F:$F

=SUMIF(INDIRECT(F$2&"!"&"$H:$H"),$A11,INDIRECT(F$2&"!"&"$F:$F"))INDIRECT(F$2&"!"&"$F:$F")F$2单元格放的是工作

h趋于0时,(f(x0+2h)-f (x0+h))h是否等于f(x+h)的导数

(f(x0+2h)-f(x0+h))/h用洛必达法则对h求导,即得=(2f'(x0)-f'(x0))/1=f'(x0)

lim h趋于0时,(f(x0+h)-f(x0-h))/2h=f`(x0) 看不懂

(f(x0+h)-f(x0-h))/2h=(f(x0+h)-f(x0)+f(x0)-f(x0-h))/2h=1/2*(((fx0+h)-f(x0))/h+((fx0-h)-f(x0))/(-h))=1

(1/2)b m p p p j l d f h f a f j h s d f y f d v h h s x g i

是问的bmpppjldfhfafjhsdfyfdvhhsxgigdg的中文意思吗?神秘的密码,无法破译

导数题 lim [f(a+h^2)-f(a)]/h=?

lim[f(a+h^2)-f(a)]/h=h*lim[f(a+h^2)-f(a)]/h^2=h*f'(a);lim[f(a+3h)-f(a-h)]/2h=2*lim[f(a+3h)-f(a-h)]/(

其请问 lim(h→0) [ f(x0+3h)-f(x0-2h) ] / h

拆成两部分[f(x0+3h)-f(x0-2h)]/h=3*[f(x0+3h)-f(x0)]/3h+2*[f(x0-2h)-f(x0)]/(-2h)于是根据极限的定义,h趋于0时,上式趋于3*f'(x0

高数有关可导性的判定问题 lim(h->o)(f(a+2h)-f(a+h))/h lim(h->o)(f(a+h)-f(

这个题出现这两种解释情况的原因是,连续是可导的必要条件而不是充分条件.无论是B还是C都是由两个函数的和构成的分子,而B和C极限的存在只能说明它们和的极限是存在的但是两个函数的极限是不一定存在的,或者两

这道极限题:Lim h→0 [f(a+3h)-f(a-h)]/2h怎么做啊?

lim(h→0)[f(a+3h)-f(a-h)]/2h=2lim(4h→0)[f(a-h+4h)-f(a-h)]/4h=2lim(h→0)f'(a-h)=2f'(a)再问:可以解释一下吗?我不太清楚。

设函数f(x)具有二阶导数,且f(x)二阶倒大于0,证明:f(a+h)+f(a-h)≥2f(a)

正解是中值定理,这里不好打符号参与资料中有详解

f(0)=0,为什么lim h->0[f(2h)-f(h]/h不能保证f'(0)存在

如果f(h)是h的连续函数就没有问题了.反例:f(x)=x+1,当x不为0时;f(x)=0,当x=0时;此时lim(f(2h)-f(h))/h=1,但f(x)在x=0不连续,当然不可导.其实两个问题最