f(a x)=-f(b-x)恒成立,则对称中心(a b 2,0)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 18:11:53
f(a x)=-f(b-x)恒成立,则对称中心(a b 2,0)
已知函数FX=X^2+AX+B 且F是偶函数,则F F F的大小关系

F(x+2)=F(-x+2)(X+2)^2+A(X+2)+B=(2-X)^2+A(2-X)+B4X+AX+=-4X-AX4+A=-4-AA=-4F(1)=1-4+B=B-3F(2.5)=6.25-10

设函数f(x)=x2+ax+b,若不等式|f(x)|

设函数f(x)=x^2+ax+b,若不等式|f(x)|

∫f(x)dx=F(x)+c,求∫f(ax+b)dx

aF(x)+ac+F(b/a)+bc/a再问:看不懂啊

已知函数f(x)=x2+ax+b f (x)为偶函数求a

f(x)为偶函数则f(x)=f(-x)x^2+ax+b=(-x)^2+a(-x)+bax=-ax2ax=0a=0

已知函数f(x)=ax-b/x-2lnx,f(1)=0

f(1)=0=>a-b=0=>a=b(1)f'(x)=a+b/x^2-2/xf'(1)=k=0=>a+b-2=0=>a=b=1=>f(x)=1-1/x-2lnxf'(x)=1+1/x^2-2/x=(1

证明:若f(x)=ax+b,则f((x1+x2)/2)={f(x1)+f(x2)}/2]

f(x)=ax+bf((x1+x2)/2)=a((x1+x2)/2)+b=ax1/2+ax2/2+b[f(x1)+f(x2)]/2=[ax1+b+ax2+b]/2=ax1/2+ax2/2+b所以f((

已知一次函数f(x)=ax+b,若f(2),f(5),f(4)成等比数列.且f(8)=15.1.求f(1)+f(2)+f

利用等比中项公式知f(5)^2=f(2)f(4)即将x=5,x=2,x=4带入函数f(x),所以(5a+b)^2=(4a+b)(2a+b)整理一下得17a^2+4ab=0提出a得a(17a+4b)=0

已知一次函数f(x)=ax+b,若f(2),f(5),f(4)成等比数列.且f(8)=15.1.求f(x)的解析式

f(2)=2a+bf(5)=5a+bf(4)=4a+b若f(2),f(5),f(4)成等比数列,则f(5)^2=f(2)f(4)即(5a+b)^2=(2a+b)(4a+b)化简得17a+4b=0(1)

求函数f(x)=x^+ax+b的导数

少写了个数字吧,猜测应该是求函数f(x)=x^2+ax+b的导数f'(x)=2x+a如果不是的话就hi我好了

已知函数f(x)=x2-ax+b.

(1)因为不等式f(x)<0的解集为(1,2),所以1+2=a1×2=b⇒a=3b=2(2)f(x)=x2-ax+1,对称轴为x=a2当a2≤0即a≤0时,ymin=f(0)=1,显然不合题意;当a2

已知f(x)=ax+b,若f(2)、f(5)、f(4)成等比数列,f(8)=15,求f(1)+f(2)+……+f(n)

答:y=4x-17Sn=f(1)+f(2)+f(3)+...+f(n)=(4*1-17)+(4*2-17)+(4*3-17)+...+(4*n-17)=4*(1+2+3+...+n)-17*n17后面

若函数f(x)=x^2+ax+b且f(x)

由题意知:x^2+ax+b=0的解为-2,3,知a=-1,b=-6.则af(-2x)=-4x^2-2x+61或x

已知函数f(x)=x2+ax+b

(1)∵f(1+x)=f(1-x)∴y=f(x)的图象关于直线x=1对称∴−a2=1即a=-2(2)∵f(x)为偶函数,∴f(-x)=f(x)对于一切实数x恒成立即(-x)2+a(-x)+b=x2+a

已知函数f(x)=ax-b/x-2lnx,f(1)=0,

1f(1)=a-b=0,a=b∴f(X)=ax-a/x-2lnxf'(X)=a+a/x^2-2/x=(ax^2-2x+a)/x^2根据定义域,x≠0,∴x^2≠0,使(-2)^2-4a^21或a0,为

已知函数f(x)=x的平方/ax+b为奇函数,f(1)

已知函数f(x)=(x^2+c)/(ax+b)为奇函数,f(1)

函数f(x)=ln(x+1)-f(0)x-f’(0)x²+2,若f(x)≤x²+ax+b,求(b-3

f(0)=2所以f(x)=ln(x+1)-2x-f'(0)x^2+2求导:f'(x)=1/(x+1)-2-2f'(0)x令x=0:f'(0)=1-2=-1所以f(x)=ln(x+1)-2x+x^2+2

设函数f(x)=ax平方+bx+1(a,b为实数) F(x)={f(x),x>0 -f(x),x0,n0 a>0,f(x

(1)由题意,当x>0时,F(x)=f(x)=ax²+bx+1,∴F(1)=a+b+1=4,即a+b=3;当x0,n0f(x)为偶函数,b=0当x>0时,F(x)=x²+1,当x0

f(x)=ax^2+2x+b,已知f(2)=4,

f(2)=4a+4+b=4;所以4a+b=0;f(-2)=4a-4+b;所以f(-2)=-4.