求定积分上限为1下限为0 Xe的-x次方dx
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 14:20:58
∫xlnxdx(1→e)=½∫lnxdx²(1→e)=½x²lnx(1→e)-½∫x²dlnx(1→e)=½e&s
把区间分为(0,π/6),(π/6,π/2)∫(0,π/2)|(1/2)-sinx|dx=∫(0,π/6)[(1/2)-sinx]dx+∫(π/6,π/2)[sinx-(1/2)]dx=[(x/2)+
∫(0→1)xe^xdx=∫(0→1)xd(e^x)=xe^x-∫(0→1)e^xdx=[(1)e^(1)-(0)e^(0)]-e^x=e-[e^(1)-e^(0)]=e-e+1=1∫(0→e)xln
用三角函数,设x=sint,原式等于cost(t属于0到π\2)也可以用几何法,原式其实是单位圆的一部分,即在第一象限的四分之一圆,答案等于(π平方)\4
由于∫(0,1)f(t)dt的上限和下限是实数,故积分是一个数,故导数为0.如果积分上限是x,那么∫(0,x)f(t)dt是x的函数,其导数为f(x).再问:但是前面求导符号为d/dx积分上下限是实数
四分之一乘以(e^2+1)
1题答案原式=(1/2)ln(2×2-1)-(1/2)ln(2x1-1)=0.5ln32题你没说清楚
令x=t^2=>可以化成4lnt(上限为2,下限为1)的定积分,lnt的常数为0不定积分为tlnt-t=>4lnt(上限为2,下限为1)的定积分=4(2ln2-2)-4(1ln1-1)=8ln2-4
总觉得这种瑕积分还是先求出原函数比较方便些.∫xln(1-x)dx=∫ln(1-x)d(x²/2)=(x²/2)ln(1-x)-(1/2)∫x²*(-1)/(1-x)dx
∫(0,ln2)xe^(-x)dx=∫(0,ln2)(-x)e^(-x)d(-x)=∫(0,ln2)(-x)d(e^(-x))=(-x)e^(-x)|(0,ln2)-∫(0,ln2)e^(-x)d(-
∫xe^-x(y+1)dy=∫e^-x(y+1)dx(y+1)=-e^-x(y+1)|y=无穷-e^-x(y+1)|y=0=0—e^-x=-e^-x再问:∫xe^-x(y+1)dy=∫e^-x(y+1
∫(2,0)1/(4+x²)dx=∫(2,0)(1/4)/(1+x²/4)dx=∫(2,0)(1/2)arctan(x/2)dx=(1/2)arctan(x/2)|(2,0)=π/
由题意可得:∫[(e^x-1)^5*](e^x)dx=∫(e^x-1)^5d(e^x-1)=[(e^x-1)^6]/6+C又积分上限为1,下限为0,代入可得:∫[(e^x-1)^5*](e^x)dx=
原式=xarctan(x/4)|(0~4)-∫xdarctan(x/4)=π-∫x/[1+(x/4)^2]dx=π-8∫dx^2/(16+x^2)=π-8*ln|16+x^2||(0~4)=π-8ln
分子有理化变为:|cosx|/√(1+sinx)dx分成两部分(0,兀/2)和(兀/2.兀)cosx/√(1+sinx)dx-cosx/√(1+sinx)dx=2(1+sinx)^1/2|(0,兀/2
答:因为∫xsin²xdx=∫x(1-cos2x)/2dx=1/2∫x(1-cos2x)dx=1/2∫x-xcos2xdx=1/2(∫xdx-∫xcos2xdx)=x²/4-1/4